PowerCool: Simulation of Cooling and Powering of 3D MPSoCs with Integrated Flow Cell Arrays

被引:14
作者
Andreev, Artem Aleksandrovich [1 ]
Sridhar, Arvind [2 ]
Sabry, Mohamed M. [3 ]
Zapater, Marina [1 ]
Ruch, Patrick [2 ]
Michel, Bruno [2 ]
Atienza, David [1 ]
机构
[1] Swiss Fed Inst Technol Lausanne EPFL, ESL, CH-1015 Lausanne, Switzerland
[2] IBM Res Zurich, CH-8803 Ruschlikon, Switzerland
[3] Stanford Univ, Robust Syst Grp, Stanford, CA 94305 USA
基金
瑞士国家科学基金会;
关键词
3D MPSoCs; thermal modeling; liquid cooling; electrochemical flow cell; BATTERY; DESIGN; ENERGY;
D O I
10.1109/TC.2017.2695179
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Integrated Flow-Cell Arrays (FCAs) represent a combination of integrated liquid cooling and on-chip power generation, converting chemical energy of the flowing electrolyte solutions to electrical energy. The FCA technology provides a promising way to address both heat removal and power delivery issues in 3D Multiprocessor Systems-on-Chips (MPSoCs). In this paper we motivate the benefits of FCA in 3D MPSoCs via a qualitative analysis and explore the capabilities of the proposed technology using our extended PowerCool simulator. PowerCool is a tool that performs combined compact thermal and electrochemical simulation of 3D MPSoCs with inter-tier FCA-based cooling and power generation. We validate our electrochemical model against experimental data obtained using a micro-scale FCA, and extend PowerCool with a compact thermal model (3D-ICE) and subthreshold leakage estimation. We show the sensitivity of the FCA cooling and power generation on the design-time (FCA geometry) and run-time (fluid inlet temperature, flow rate) parameters. Our results show that we can optimize the FCA to keep maximum chip temperature below 95 degrees C for an average chip power consumption of 50 W/cm(2) while generating up to 3.6 W per cm(2) of chip area.
引用
收藏
页码:73 / 85
页数:13
相关论文
共 30 条
[11]   Energy-Efficient Cooling of Liquid-Cooled Electronics Having Temperature-Dependent Leakage [J].
Hall, Shawn A. ;
Kopcsay, Gerard V. .
JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2014, 6 (01)
[12]  
J. jep122E, 2011, FAIL MECH MOD SEM DE
[13]   Microfluidic fuel cells: A review [J].
Kjeang, Erik ;
Djilali, Ned ;
Sinton, David .
JOURNAL OF POWER SOURCES, 2009, 186 (02) :353-369
[14]  
Kontorinis V, 2012, CONF PROC INT SYMP C, P488, DOI 10.1109/ISCA.2012.6237042
[15]   Evolution and Outlook of TSV and 3D IC/Si Integration [J].
Lau, John H. .
2010 12TH ELECTRONICS PACKAGING TECHNOLOGY CONFERENCE (EPTC), 2010, :560-570
[16]   A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-Scale Energy Storage [J].
Li, Liyu ;
Kim, Soowhan ;
Wang, Wei ;
Vijayakumar, M. ;
Nie, Zimin ;
Chen, Baowei ;
Zhang, Jianlu ;
Xia, Guanguang ;
Hu, Jianzhi ;
Graff, Gordon ;
Liu, Jun ;
Yang, Zhenguo .
ADVANCED ENERGY MATERIALS, 2011, 1 (03) :394-400
[17]   Bridging the processor-memory performance gap with 3D IC technology [J].
Liu, CC ;
Ganusov, I ;
Burtscher, M ;
Tiwari, S .
IEEE DESIGN & TEST OF COMPUTERS, 2005, 22 (06) :556-564
[18]   3D-Stacked memory architectures for multi-core processors [J].
Loh, Gabriel H. .
ISCA 2008 PROCEEDINGS: 35TH INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE, 2008, :453-464
[19]   A thermally-aware performance analysis of vertically integrated (3-D) processor-memory hierarchy [J].
Loi, Gian Luca ;
Agrawal, Banit ;
Srivastava, Navin ;
Lin, Sheng-Chih ;
Sherwood, Timothy ;
Banerjee, Kaustav .
43RD DESIGN AUTOMATION CONFERENCE, PROCEEDINGS 2006, 2006, :991-+
[20]   Mixing with herringbone-inspired microstructures: overcoming the diffusion limit in co-laminar microfluidic devices [J].
Marschewski, Julian ;
Jung, Stefan ;
Ruch, Patrick ;
Prasad, Nishant ;
Mazzotti, Sergio ;
Michel, Bruno ;
Poulikakos, Dimos .
LAB ON A CHIP, 2015, 15 (08) :1923-1933