PowerCool: Simulation of Cooling and Powering of 3D MPSoCs with Integrated Flow Cell Arrays

被引:14
作者
Andreev, Artem Aleksandrovich [1 ]
Sridhar, Arvind [2 ]
Sabry, Mohamed M. [3 ]
Zapater, Marina [1 ]
Ruch, Patrick [2 ]
Michel, Bruno [2 ]
Atienza, David [1 ]
机构
[1] Swiss Fed Inst Technol Lausanne EPFL, ESL, CH-1015 Lausanne, Switzerland
[2] IBM Res Zurich, CH-8803 Ruschlikon, Switzerland
[3] Stanford Univ, Robust Syst Grp, Stanford, CA 94305 USA
基金
瑞士国家科学基金会;
关键词
3D MPSoCs; thermal modeling; liquid cooling; electrochemical flow cell; BATTERY; DESIGN; ENERGY;
D O I
10.1109/TC.2017.2695179
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Integrated Flow-Cell Arrays (FCAs) represent a combination of integrated liquid cooling and on-chip power generation, converting chemical energy of the flowing electrolyte solutions to electrical energy. The FCA technology provides a promising way to address both heat removal and power delivery issues in 3D Multiprocessor Systems-on-Chips (MPSoCs). In this paper we motivate the benefits of FCA in 3D MPSoCs via a qualitative analysis and explore the capabilities of the proposed technology using our extended PowerCool simulator. PowerCool is a tool that performs combined compact thermal and electrochemical simulation of 3D MPSoCs with inter-tier FCA-based cooling and power generation. We validate our electrochemical model against experimental data obtained using a micro-scale FCA, and extend PowerCool with a compact thermal model (3D-ICE) and subthreshold leakage estimation. We show the sensitivity of the FCA cooling and power generation on the design-time (FCA geometry) and run-time (fluid inlet temperature, flow rate) parameters. Our results show that we can optimize the FCA to keep maximum chip temperature below 95 degrees C for an average chip power consumption of 50 W/cm(2) while generating up to 3.6 W per cm(2) of chip area.
引用
收藏
页码:73 / 85
页数:13
相关论文
共 30 条
[1]  
[Anonymous], MEMCON
[2]  
[Anonymous], EL SYST INT TECHN C
[3]  
[Anonymous], DES AUT TEST EUR C E
[4]  
[Anonymous], [No title captured]
[5]   Interlayer cooling potential in vertically integrated packages [J].
Brunschwiler, T. ;
Michel, B. ;
Rothuizen, H. ;
Kloter, U. ;
Wunderle, B. ;
Oppermann, H. ;
Reichl, H. .
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2009, 15 (01) :57-74
[6]  
Burton EA, 2014, APPL POWER ELECT CO, P432, DOI 10.1109/APEC.2014.6803344
[7]   A practical implementation of silicon microchannel coolers for high power chips [J].
Colgan, Evan G. ;
Furman, Bruce ;
Gaynes, Michael ;
Graham, Willian S. ;
LaBianca, Nancy C. ;
Magerlein, John H. ;
Polastre, Robert J. ;
Rothwell, Mary Beth ;
Bezama, R. J. ;
Choudhary, Rehan ;
Marston, Kenneth C. ;
Toy, Hilton ;
Wakil, Jamil ;
Zitz, Jeffrey A. ;
Schmidt, Roger R. .
IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 2007, 30 (02) :218-225
[8]   Utilizing Predictors for Efficient Thermal Management in Multiprocessor SoCs [J].
Coskun, Ayse Kivilcim ;
Rosing, Tajana Simunic ;
Gross, Kenny C. .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2009, 28 (10) :1503-1516
[9]   DESIGN OF ION-IMPLANTED MOSFETS WITH VERY SMALL PHYSICAL DIMENSIONS [J].
DENNARD, RH ;
GAENSSLEN, FH ;
YU, HN ;
RIDEOUT, VL ;
BASSOUS, E ;
LEBLANC, AR .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1974, SC 9 (05) :256-268
[10]  
Fluhr E.J., 2014, ISSCC DIG TECH PAP I, P96