ESTIMATES OF SOLUTIONS OF LINEAR NEUTRON TRANSPORT EQUATION AT LARGE TIME AND SPECTRAL SINGULARITIES

被引:0
作者
Romanov, Roman [1 ,2 ]
机构
[1] St Petersburg State Univ, Fac Phys, Lab Quantum Networks, St Petersburg 198504, Russia
[2] St Petersburg State Univ, Fac Phys, Dept Math Phys, St Petersburg 198504, Russia
关键词
Transport equation; spectral singularities; asymptotics of semigroups; OPERATOR; SUBSPACE; SLAB;
D O I
10.3934/krm.2012.5.113
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The spectral analysis of a dissipative linear transport operator with a polynomial collision integral by the Szokefalvi-Nagy - Foias functional model is given. An exact estimate for the remainder in the asymptotic of the corresponding evolution semigroup is proved in the isotropic case. In the general case, it is shown that the operator has at most finitely many eigenvalues and spectral singularities and an absolutely continuous essential spectrum. An upper estimate for the remainder is established.
引用
收藏
页码:113 / 128
页数:16
相关论文
共 17 条
[1]  
[Anonymous], 1981, P STEKLOV I MATH, V147, P85
[2]   Spectral analysis of the transport operator: A functional model approach [J].
Kuperin, YA ;
Nabokov, SN ;
Romanov, RV .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2002, 51 (06) :1389-1425
[3]  
LEHNER J, 1962, J MATH MECH, V11, P173
[4]   ON THE SPECTRUM OF AN UNSYMMETRIC OPERATOR ARISING IN THE TRANSPORT THEORY OF NEUTRONS [J].
LEHNER, J ;
WING, GM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1955, 8 (02) :217-234
[5]   SOLUTION OF THE LINEARIZED BOLTZMANN TRANSPORT EQUATION FOR THE SLAB GEOMETRY [J].
LEHNER, J ;
WING, GM .
DUKE MATHEMATICAL JOURNAL, 1956, 23 (01) :125-142
[6]  
NABOKO S, 2004, ACTA SCI MATH SZEGED, V70, P379
[7]  
NABOKO SN, 1993, AM MATH SOC TRANSL, V157, P127
[8]  
Naimark M.A., 1960, Am. Math. Soc. Transl., V16, P103
[9]  
NikorsIdi N.K., 1986, FUNDAMENTAL PRINCIPL, V273
[10]  
Pavlov B. S., 1975, IZV AKAD NAUK SSSR M, V39, P123