Lagrangian formulation with dissipation of Born-Oppenheimer molecular dynamics using the density-functional tight-binding method

被引:62
|
作者
Zheng, Guishan [1 ]
Niklasson, Anders M. N. [2 ]
Karplus, Martin [1 ,3 ]
机构
[1] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[3] Univ Strasbourg, ISIS, Lab Chim Biophys, F-67000 Strasbourg, France
来源
JOURNAL OF CHEMICAL PHYSICS | 2011年 / 135卷 / 04期
基金
美国国家卫生研究院;
关键词
carbon compounds; convergence of numerical methods; density functional theory; HF calculations; molecular dynamics method; organic compounds; SCF calculations; tight-binding calculations; water; PARTICLE MESH EWALD; SCC-DFTB METHOD; LIQUID WATER; CONVERGENCE ACCELERATION; SEMIEMPIRICAL METHODS; 1ST PRINCIPLES; BIOLOGICAL-SYSTEMS; COMBINED QUANTUM; GROUND-STATES; SIMULATIONS;
D O I
10.1063/1.3605303
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An important element determining the time requirements of Born-Oppenheimer molecular dynamics (BOMD) is the convergence rate of the self-consistent solution of Roothaan equations (SCF). We show here that improved convergence and dynamics stability can be achieved by use of a Lagrangian formalism of BOMD with dissipation (DXL-BOMD). In the DXL-BOMD algorithm, an auxiliary electronic variable (e. g., the electron density or Fock matrix) is propagated and a dissipative force is added in the propagation to maintain the stability of the dynamics. Implementation of the approach in the self-consistent charge density functional tight-binding method makes possible simulations that are several hundred picoseconds in lengths, in contrast to earlier DFT-based BOMD calculations, which have been limited to tens of picoseconds or less. The increase in the simulation time results in a more meaningful evaluation of the DXL-BOMD method. A comparison is made of the number of iterations (and time) required for convergence of the SCF with DXL-BOMD and a standard method (starting with a zero charge guess for all atoms at each step), which gives accurate propagation with reasonable SCF convergence criteria. From tests using NVE simulations of C2F4 and 20 neutral amino acid molecules in the gas phase, it is found that DXL-BOMD can improve SCF convergence by up to a factor of two over the standard method. Corresponding results are obtained in simulations of 32 water molecules in a periodic box. Linear response theory is used to analyze the relationship between the energy drift and the correlation of geometry propagation errors. (C) 2011 American Institute of Physics.[doi:10.1063/1.3605303]
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Extended Lagrangian Born-Oppenheimer molecular dynamics with dissipation
    Niklasson, Anders M. N.
    Steneteg, Peter
    Odell, Anders
    Bock, Nicolas
    Challacombe, Matt
    Tymczak, C. J.
    Holmstroem, Erik
    Zheng, Guishan
    Weber, Valery
    JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (21):
  • [2] Density-functional tight-binding for beginners
    Koskinen, Pekka
    Makinen, Ville
    COMPUTATIONAL MATERIALS SCIENCE, 2009, 47 (01) : 237 - 253
  • [3] Extended Lagrangian Born-Oppenheimer molecular dynamics for orbital-free density-functional theory and polarizable charge equilibration models
    Niklasson, Anders M. N.
    JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (05):
  • [4] Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics
    Martinez, Enrique
    Cawkwell, Marc J.
    Voter, Arthur F.
    Niklasson, Anders M. N.
    JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (15):
  • [5] Generalized extended Lagrangian Born-Oppenheimer molecular dynamics
    Niklasson, Anders M. N.
    Cawkwell, Marc J.
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (16):
  • [6] Density-Matrix Based Extended Lagrangian Born-Oppenheimer Molecular Dynamics
    Niklasson, Anders M. N.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (06) : 3628 - 3640
  • [7] Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method
    Nishimoto, Yoshio
    Fedorov, Dmitri G.
    Irle, Stephan
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (11) : 4801 - 4812
  • [8] Extended Lagrangian Born-Oppenheimer molecular dynamics: from density functional theory to charge relaxation models
    Niklasson, Anders M. N.
    EUROPEAN PHYSICAL JOURNAL B, 2021, 94 (08):
  • [9] Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids
    Aradi, Balint
    Niklasson, Anders M. N.
    Frauenheim, Thomas
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (07) : 3357 - 3363
  • [10] Extended Lagrangian Born-Oppenheimer molecular dynamics using a Krylov subspace approximation
    Niklasson, Anders M. N.
    JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (10):