Synthesizing Disparate LiDAR and Satellite Datasets through Deep Learning to Generate Wall-to-Wall Regional Inventories for the Complex, Mixed-Species Forests of the Eastern United States

被引:11
作者
Ayrey, Elias [1 ,2 ]
Hayes, Daniel J. [2 ]
Kilbride, John B. [3 ]
Fraver, Shawn [2 ]
Kershaw, John A. [4 ]
Cook, Bruce D. [5 ]
Weiskittel, Aaron R. [6 ]
机构
[1] Pachama Inc, 1435 48th Ave, San Francisco, CA 94122 USA
[2] Univ Maine, Sch Forest Resources, 5755 Nutting Hall, Orono, ME 04469 USA
[3] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, 114 Wilkinson Hall, Corvallis, OR 97331 USA
[4] Univ New Brunswick, Fac Forestry & Environm Management, POB 4400,28 Dineen Dr, Fredericton, NB E3B 5A3, Canada
[5] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Code 618, Greenbelt, MD 20771 USA
[6] Univ Maine, Ctr Res Sustainable Forests, 5755 Nutting Hall, Orono, ME 04469 USA
基金
美国食品与农业研究所; 美国国家科学基金会;
关键词
LiDAR; airborne laser scanning; enhanced forest inventory; aboveground biomass; forest carbon; deep learning; Maine; New Hampshire; Vermont; Massachusetts; Connecticut; Rhode Island; LASER-SCANNING DATA; NEAREST-NEIGHBOR IMPUTATION; ABOVEGROUND BIOMASS; AIRBORNE LIDAR; LEAF-OFF; DENSITY; SIZE; DISTURBANCE; ATTRIBUTES; EQUATIONS;
D O I
10.3390/rs13245113
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Light detection and ranging (LiDAR) has become a commonly-used tool for generating remotely-sensed forest inventories. However, LiDAR-derived forest inventories have remained uncommon at a regional scale due to varying parameters among LiDAR data acquisitions and the availability of sufficient calibration data. Here, we present a model using a 3-D convolutional neural network (CNN), a form of deep learning capable of scanning a LiDAR point cloud, combined with coincident satellite data (spectral, phenology, and disturbance history). We compared this approach to traditional modeling used for making forest predictions from LiDAR data (height metrics and random forest) and found that the CNN had consistently lower uncertainty. We then applied the CNN to public data over six New England states in the USA, generating maps of 14 forest attributes at a 10 m resolution over 85% of the region. Aboveground biomass estimates produced a root mean square error of 36 Mg ha(-1) (44%) and were within the 97.5% confidence of independent county-level estimates for 33 of 38 or 86.8% of the counties examined. CNN predictions for stem density and percentage of conifer attributes were moderately successful, while predictions for detailed species groupings were less successful. The approach shows promise for improving the prediction of forest attributes from regional LiDAR data and for combining disparate LiDAR datasets into a common framework for large-scale estimation.
引用
收藏
页数:27
相关论文
共 89 条
[1]  
Abadi M, 2016, ACM SIGPLAN NOTICES, V51, P1, DOI [10.1145/3022670.2976746, 10.1145/2951913.2976746]
[2]   A BIOMASS ESTIMATE OVER THE HARVARD FOREST USING FIELD MEASUREMENTS WITH RADAR AND LIDAR DATA [J].
Ahmed, Razi ;
Siqueira, Paul ;
Bergen, Kathleen ;
Chapman, Bruce ;
Hensley, Scott .
2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, :4768-4771
[3]   Optimizing the Remote Detection of Tropical Rainforest Structure with Airborne Lidar: Leaf Area Profile Sensitivity to Pulse Density and Spatial Sampling [J].
Alves de Almeida, Danilo Roberti ;
Stark, Scott C. ;
Shao, Gang ;
Schietti, Juliana ;
Nelson, Bruce Walker ;
Silva, Carlos Alberto ;
Gorgens, Eric Bastos ;
Valbuena, Ruben ;
Papa, Daniel de Almeida ;
Santin Brancalion, Pedro Henrique .
REMOTE SENSING, 2019, 11 (01)
[4]  
[Anonymous], ARXIV150800092
[5]   Ecologically-Based Metrics for Assessing Structure in Developing Area-Based, Enhanced Forest Inventories from LiDAR [J].
Ayrey, Elias ;
Hayes, Daniel J. ;
Fraver, Shawn ;
Kershaw, John A., Jr. ;
Weiskittel, Aaron R. .
CANADIAN JOURNAL OF REMOTE SENSING, 2019, 45 (01) :88-112
[6]   The Use of Three-Dimensional Convolutional Neural Networks to Interpret LiDAR for Forest Inventory [J].
Ayrey, Elias ;
Hayes, Daniel J. .
REMOTE SENSING, 2018, 10 (04)
[7]   Mapping US forest biomass using nationwide forest inventory data and moderate resolution information [J].
Blackard, J. A. ;
Finco, M. V. ;
Helmer, E. H. ;
Holden, G. R. ;
Hoppus, M. L. ;
Jacobs, D. M. ;
Lister, A. J. ;
Moisen, G. G. ;
Nelson, M. D. ;
Riemann, R. ;
Ruefenacht, B. ;
Salajanu, D. ;
Weyermann, D. L. ;
Winterberger, K. C. ;
Brandeis, T. J. ;
Czaplewski, R. L. ;
McRoberts, R. E. ;
Patterson, P. L. ;
Tymcio, R. P. .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (04) :1658-1677
[8]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[9]   Mapping forest aboveground biomass in the Northeastern United States with ALOS PALSAR dual-polarization L-band [J].
Cartus, Oliver ;
Santoro, Maurizio ;
Kellndorfer, Josef .
REMOTE SENSING OF ENVIRONMENT, 2012, 124 :466-478
[10]   RESPONSE OF THEMATIC MAPPER BANDS TO PLANT WATER-STRESS [J].
CIBULA, WG ;
ZETKA, EF ;
RICKMAN, DL .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1992, 13 (10) :1869-1880