Global existence for the Cauchy problem for the viscous shallow water equations

被引:45
作者
Sundbye, L [1 ]
机构
[1] Metropolitan State Coll, Dept Math & Comp Sci, Denver, CO 80217 USA
关键词
D O I
10.1216/rmjm/1181071760
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A global existence and uniqueness theorem of strong solutions for the initial-value problem for the viscous shallow water equations is established for small initial data and no forcing. Polynomial L-2 and L-infinity decay rates are established and the solution is shown to be classical for t > 0.
引用
收藏
页码:1135 / 1152
页数:18
相关论文
共 16 条
[1]  
[Anonymous], 1980, J MATH KYOTO U
[2]  
BUI AT, 1981, SIAM J MATH ANAL, V12, P229
[3]   GLOBAL EXISTENCE OF CLASSICAL-SOLUTIONS IN THE DISSIPATIVE SHALLOW-WATER EQUATIONS [J].
KLOEDEN, PE .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1985, 16 (02) :301-315
[4]  
LEITH CE, 1980, J ATMOS SCI, V37, P958, DOI 10.1175/1520-0469(1980)037<0958:NNMIAQ>2.0.CO
[5]  
2
[6]  
Matsumura, 1981, ENERGY METHOD EQUATI
[7]   INITIAL BOUNDARY-VALUE-PROBLEMS FOR THE EQUATIONS OF MOTION OF COMPRESSIBLE VISCOUS AND HEAT-CONDUCTIVE FLUIDS [J].
MATSUMURA, A ;
NISHIDA, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 89 (04) :445-464
[8]  
MATSUMURA A., 1981, COMPUT METHOD APPL M, VV, P389
[9]  
Racke R., 1992, LECT NONLINEAR EVOLU
[10]   Global existence for the dirichlet problem for the viscous shallow water equations [J].
Sundbye, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 202 (01) :236-258