Parameter estimation and hypothesis testing on geographically weighted gamma regression

被引:2
|
作者
Putri, Dina Eka [1 ]
Purhadi [1 ]
Prastyo, Dedy Dwi [1 ]
机构
[1] Inst Teknol Sepuluh Nopember, Dept Stat, Surabaya, Indonesia
来源
ASIAN MATHEMATICAL CONFERENCE 2016 (AMC 2016) | 2017年 / 893卷
关键词
D O I
10.1088/1742-6596/893/1/012025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Having applied to observations from different location, the gamma regression yields global parameters which are assumed to be valid in any location. In fact, each location may have different characteristics such that the existence of spatial effect needs to be considered. In such a case the parameters of gamma regression are less representative. Thus, Geographically Weighted Gamma Regression (GWGR) plays into role. This study aims to estimate parameters of GWGR model using Maximum Likelihood Estimation (MLE) method and numerical optimization using Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Once the parameter estimation done, the hypothesis testing procedure was used to test parameter similarity between gamma regression and GWGR as well as to test the significance of independent variables within the model, both partially using Z-test and simultaneously using Maximum Likelihood Ratio Test (MLRT).
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Parameter Estimation and Hypothesis Testing of Geographically Weighted Multivariate Generalized Poisson Regression
    Berliana, Sarni Maniar
    Purhadi
    Sutikno
    Rahayu, Santi Puteri
    MATHEMATICS, 2020, 8 (09)
  • [2] Parameter Estimation in Geographically Weighted Regression
    Luo, Juan
    2009 17TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS, VOLS 1 AND 2, 2009, : 1206 - 1211
  • [3] Multivariate Gamma Regression: Parameter Estimation, Hypothesis Testing, and Its Application
    Rahayu, Anita
    Purhadi
    Sutikno
    Prastyo, Dedy Dwi
    SYMMETRY-BASEL, 2020, 12 (05):
  • [4] On the estimation and testing of mixed geographically weighted regression models
    Wei, Chuan-Hua
    Qi, Fei
    ECONOMIC MODELLING, 2012, 29 (06) : 2615 - 2620
  • [5] Area-to-point parameter estimation with geographically weighted regression
    Daisuke Murakami
    Morito Tsutsumi
    Journal of Geographical Systems, 2015, 17 : 207 - 225
  • [6] Area-to-point parameter estimation with geographically weighted regression
    Murakami, Daisuke
    Tsutsumi, Morito
    JOURNAL OF GEOGRAPHICAL SYSTEMS, 2015, 17 (03) : 207 - 225
  • [7] Parameter Estimation of Locally Compensated Ridge-Geographically Weighted Regression Model
    Fadliana, Alfi
    Pramoedyo, Henny
    Fitriani, Rahma
    9TH ANNUAL BASIC SCIENCE INTERNATIONAL CONFERENCE 2019 (BASIC 2019), 2019, 546
  • [8] The Multiple Testing Issue in Geographically Weighted Regression
    da Silva, Alan Ricardo
    Fotheringham, A. Stewart
    GEOGRAPHICAL ANALYSIS, 2016, 48 (03) : 233 - 247
  • [9] Parameter Estimation of Geographically Weighted Regression (GWR) Model Using Weighted Least Square and Its Application
    Soemartojo, Saskya Mary
    Ghaisani, Rima Dini
    Siswantining, Titin
    Shahab, Mariam Rahmania
    Ariyanto, Moch. Muchid
    INTERNATIONAL CONFERENCE ON SCIENCE AND APPLIED SCIENCE (ICSAS) 2018, 2018, 2014
  • [10] Population estimation using geographically weighted regression
    Lo, C. P.
    GISCIENCE & REMOTE SENSING, 2008, 45 (02) : 131 - 148