Light subgraphs in the family of 1-planar graphs with high minimum degree

被引:7
作者
Zhang, Xin [1 ]
Liu, Gui Zhen [1 ]
Wu, Jian Liang [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
1-Planar graph; lightness; height; discharging; EDGE COLORINGS;
D O I
10.1007/s10114-011-0439-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph is 1-planar if it can be drawn in the plane so that each edge is crossed by at most one other edge. In this paper, it is shown that each 1-planar graph with minimum degree 7 contains a copy of (2)a( (1)a(a) (2)) with all vertices of degree at most 12. In addition, we also prove the existence of a graph (1)a( (1)a(a) (2)) with relatively small degree vertices in 1-planar graphs with minimum degree at least 6.
引用
收藏
页码:1155 / 1168
页数:14
相关论文
共 23 条
[1]   Coloring vertices and faces of locally planar graphs [J].
Albertson, Michael O. ;
Mohar, Bojan .
GRAPHS AND COMBINATORICS, 2006, 22 (03) :289-295
[2]  
Bondy J. A., 1976, Graduate Texts in Mathematics, V290
[3]  
Borodin O. V., 2009, J APPL IND MATH, V3, P28
[4]   Acyclic colouring of 1-planar graphs [J].
Borodin, OV ;
Kostochka, AV ;
Raspaud, A ;
Sopena, E .
DISCRETE APPLIED MATHEMATICS, 2001, 114 (1-3) :29-41
[5]   A NEW PROOF OF THE 6 COLOR THEOREM [J].
BORODIN, OV .
JOURNAL OF GRAPH THEORY, 1995, 19 (04) :507-521
[6]  
BORODIN OV, 1984, METODY DISKRET ANAL, V41, P12
[7]   The structure of 1-planar graphs [J].
Fabrici, Igor ;
Madaras, Tomas .
DISCRETE MATHEMATICS, 2007, 307 (7-8) :854-865
[8]  
Hudak David, 2009, Discussiones Mathematicae Graph Theory, V29, P385, DOI 10.7151/dmgt.1454
[9]   On local properties of 1-planar graphs with high minimum degree [J].
Hudak, David ;
Madaras, Tomas .
ARS MATHEMATICA CONTEMPORANEA, 2011, 4 (02) :245-254
[10]   Minimal non-1-planar graphs [J].
Korzhik, Vladimir P. .
DISCRETE MATHEMATICS, 2008, 308 (07) :1319-1327