A flexible hybridized electromagnetic-triboelectric multi-purpose self-powered sensor

被引:55
作者
Askari, Hassan [1 ]
Saadatnia, Zia [2 ]
Asadi, Ehsan [1 ]
Khajepour, Amir [1 ]
Khamesee, Mir Behrad [1 ]
Zu, Jean [2 ]
机构
[1] Univ Waterloo, Dept Mech & Mechatron Engn, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[2] Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada
关键词
Hybridized nano generator; Electromagnetism; Triboelectricity; Self-powered sensor; Tire condition monitoring; SCAVENGING BIOMECHANICAL ENERGY; BROAD FREQUENCY BAND; BLUE ENERGY; MECHANICAL ENERGY; NANOGENERATOR; GENERATOR; HARVESTER;
D O I
10.1016/j.nanoen.2018.01.011
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper presents a novel hybridized flexible electromagnetic-triboelectric generator that consists of a round/square shaped coil and magnet, and also, highly flexible, mechanically and thermally durable, and cost-effective polymeric materials. The reported hybridized nano generator is capable of converting external mechanical load to electricity. Using a systematic optimization approach results in an optimal configuration and size for the electromagnetic components of the self-powered sensor. Combination of the electromagnetic and triboelectric components provides several advantages for the proposed self-powered device including high resolution and power density even in low frequency and small amplitude of the excitations. We probe the sensitivity of the fabricated self-powered sensor considering different amplitude and frequency of excitations as well as external resistors. After providing a general performance analysis for the proposed self powered sensor, we show its potential for different specific applications including human motion based energy harvesting and sensing, tire condition monitoring, and pressure sensing. The utilization of the proposed self-powered sensor can provide a sustainable energy source for wireless sensor nodes, and also overcomes the battery capacity limitation that restricts the life time durability of mobile electrical devices.
引用
收藏
页码:319 / 329
页数:11
相关论文
共 44 条
[1]   A washable, stretchable, and self-powered human-machine interfacing Triboelectric nanogenerator for wireless communications and soft robotics pressure sensor arrays [J].
Ahmed, Abdelsalam ;
Zhang, Steven L. ;
Hassan, Islam ;
Saadatnia, Zia ;
Zi, Yunlong ;
Zu, Jean ;
Wang, Zhong Lin .
EXTREME MECHANICS LETTERS, 2017, 13 :25-35
[2]   Self-Powered Wireless Sensor Node Enabled by a Duck-Shaped Triboelectric Nanogenerator for Harvesting Water Wave Energy [J].
Ahmed, Abdelsalam ;
Saadatnia, Zia ;
Hassan, Islam ;
Zi, Yunlong ;
Xi, Yi ;
He, Xu ;
Zu, Jean ;
Wang, Zhong Lin .
ADVANCED ENERGY MATERIALS, 2017, 7 (07)
[3]  
[Anonymous], 2016, NAT COMMUN
[4]   High frequency nano electromagnetic self-powered sensor: Concept, modelling and analysis [J].
Asadi, Ehsan ;
Askari, Hassan ;
Khamesee, Mir Behrad ;
Khajepour, Amir .
MEASUREMENT, 2017, 107 :31-40
[5]   A hybridized electromagnetic-triboelectric self-powered sensor for traffic monitoring: concept, modelling, and optimization [J].
Askari, Hassan ;
Asadi, Ehsan ;
Saadatnia, Zia ;
Khajepour, Amir ;
Khamesee, Mir Behrad ;
Zu, Jean .
NANO ENERGY, 2017, 32 :105-116
[6]   Rotating-Sleeve Triboelectric-Electromagnetic Hybrid Nanogenerator for High Efficiency of Harvesting Mechanical Energy [J].
Cao, Ran ;
Zhou, Tao ;
Wang, Bin ;
Yin, Yingying ;
Yuan, Zuqing ;
Li, Congju ;
Wang, Zhong Lin .
ACS NANO, 2017, 11 (08) :8370-8378
[7]   A fully-packaged and robust hybridized generator for harvesting vertical rotation energy in broad frequency band and building up self-powered wireless systems [J].
Chen, Jie ;
Guo, Hengyu ;
Liu, Guanlin ;
Wang, Xue ;
Xi, Yi ;
Javed, Muhammad Sufyan ;
Hu, Chenguo .
NANO ENERGY, 2017, 33 :508-514
[8]   Networks of Triboelectric Nanogenerators for Harvesting Water Wave Energy: A Potential Approach toward Blue Energy [J].
Chen, Jun ;
Yang, Jin ;
Li, Zhaoling ;
Fan, Xing ;
Zi, Yunlong ;
Jing, Qingshen ;
Guo, Hengyu ;
Wen, Zhen ;
Pradel, Ken C. ;
Niu, Simiao ;
Wang, Zhong Lin .
ACS NANO, 2015, 9 (03) :3324-3331
[9]   An Ultrathin Flexible Single-Electrode Triboelectric-Nanogenerator for Mechanical Energy Harvesting and Instantaneous Force Sensing [J].
Chen, Shu Wen ;
Cao, Xia ;
Wang, Ning ;
Ma, Long ;
Zhu, Hui Rui ;
Willander, Magnus ;
Jie, Yang ;
Wang, Zhong Lin .
ADVANCED ENERGY MATERIALS, 2017, 7 (01)
[10]   1.6 V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers [J].
Chen, Xi ;
Xu, Shiyou ;
Yao, Nan ;
Shi, Yong .
NANO LETTERS, 2010, 10 (06) :2133-2137