Two-dimensional superintegrable systems from operator algebras in one dimension

被引:7
作者
Marquette, Ian [1 ]
Sajedi, Masoumeh [2 ]
Winternitz, Pavel [3 ]
机构
[1] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
[2] Univ Montreal, Dept Math & Stat, CP 6128 Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
[3] Univ Montreal, Ctr Rech Math, Dept Math & Stat, CP 6128 Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
基金
澳大利亚研究理事会; 加拿大自然科学与工程研究理事会;
关键词
superintegrable systems; Painleve transcendents; ladder operators; separation of variables; ORDER PAINLEVE EQUATIONS; DIFFERENTIAL-EQUATIONS; 3RD-ORDER INTEGRALS; QUANTUM-MECHANICS; HIGHER SYMMETRIES; POTENTIALS; HAMILTONIANS; SPECTRUM;
D O I
10.1088/1751-8121/ab01a2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop new constructions of 2D classical and quantum superintegrable Hamiltonians allowing separation of variables in Cartesian coordinates. In classical mechanics we start from two functions on a one-dimensional phase space, a natural Hamiltonian H and a polynomial of order N in the momentum p. We assume that their Poisson commutator {H, K} vanishes, is a constant, a constant times H, or a constant times K. In the quantum case H and K are operators and their Lie commutator has one of the above properties. We use two copies of such (H, K) pairs to generate two-dimensional superintegrable systems in the Euclidean space E-2, allowing the separation of variables in Cartesian coordinates. Nearly all known separable superintegrable systems in E-2 can be obtained in this manner and we obtain new ones for N = 4.
引用
收藏
页数:27
相关论文
共 70 条
  • [1] NON-LINEAR EVOLUTION EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF PAINLEVE TYPE
    ABLOWITZ, MJ
    RAMANI, A
    SEGUR, H
    [J]. LETTERE AL NUOVO CIMENTO, 1978, 23 (09): : 333 - 338
  • [2] Fifth-order superintegrable quantum systems separating in Cartesian coordinates: Doubly exotic potentials
    Abouamal, Ismail
    Winternitz, Pavel
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (02)
  • [3] Systems with higher-order shape invariance: spectral and algebraic properties
    Andrianov, A
    Cannata, F
    Ioffe, M
    Nishnianidze, D
    [J]. PHYSICS LETTERS A, 2000, 266 (4-6) : 341 - 349
  • [4] [Anonymous], J MATH PHYS
  • [5] On the theory of the hydrogen atom.
    Bargmann, V.
    [J]. ZEITSCHRIFT FUR PHYSIK, 1936, 99 (7-8): : 576 - 582
  • [6] CLASSIFICATION OF SECOND-ORDER RAISING OPERATORS FOR HAMILTONIANS IN 2 VARIABLES
    BOYER, CP
    MILLER, W
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (09) : 1484 - 1489
  • [7] Burchnall JL, 1923, P LOND MATH SOC, V21, P420
  • [8] Superintegrable Lissajous systems on the sphere
    Calzada, J. A.
    Kuru, S.
    Negro, J.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2014, 129 (08): : 1 - 15
  • [9] Calzada J A, 2014, ARXIV14047066
  • [10] Polynomial Heisenberg algebras
    Carballo, JM
    Fernández, DJ
    Negro, J
    Nieto, LM
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (43): : 10349 - 10362