A DIRECT-type approach for derivative-free constrained global optimization

被引:21
|
作者
Di Pillo, G. [2 ]
Liuzzi, G. [1 ]
Lucidi, S. [2 ]
Piccialli, V. [3 ]
Rinaldi, F. [4 ]
机构
[1] CNR, Ist Anal Sistemi & Informat A Ruberti, Via Taurini 19, I-00185 Rome, Italy
[2] Univ Roma La Sapienza, Dept Comp Control & Management Engn, Via Ariosto 25, I-00185 Rome, Italy
[3] Univ Roma Tor Vergata, Dipartimento Ingn Civile & Ingn Informat, Viale Politecn 1, I-00133 Rome, Italy
[4] Univ Padua, Dipartimento Matemat, Via Trieste 63, I-35121 Padua, Italy
关键词
Global optimization; Derivative-free optimization; Nonlinear optimization; DIRECT-type algorithm;
D O I
10.1007/s10589-016-9876-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In the field of global optimization, many efforts have been devoted to globally solving bound constrained optimization problems without using derivatives. In this paper we consider global optimization problems where both bound and general nonlinear constraints are present. To solve this problem we propose the combined use of a DIRECT-type algorithm with a derivative-free local minimization of a nonsmooth exact penalty function. In particular, we define a new DIRECT-type strategy to explore the search space by explicitly taking into account the two-fold nature of the optimization problems, i.e. the global optimization of both the objective function and of a feasibility measure. We report an extensive experimentation on hard test problems to show viability of the approach.
引用
收藏
页码:361 / 397
页数:37
相关论文
共 50 条
  • [31] A progressive barrier derivative-free trust-region algorithm for constrained optimization
    Audet, Charles
    Conn, Andrew R.
    Le Digabel, Sebastien
    Peyrega, Mathilde
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 71 (02) : 307 - 329
  • [32] A derivative-free methodology with local and global search for the constrained joint optimization of well locations and controls
    Obiajulu J. Isebor
    Louis J. Durlofsky
    David Echeverría Ciaurri
    Computational Geosciences, 2014, 18 : 463 - 482
  • [33] Derivative-free Methods for Structural Optimization
    Ilunga, Guilherme
    Leitao, Antonio
    ECAADE 2018: COMPUTING FOR A BETTER TOMORROW, VO 1, 2018, : 179 - 186
  • [34] Derivative-free methods for bound constrained mixed-integer optimization
    Liuzzi, G.
    Lucidi, S.
    Rinaldi, F.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 53 (02) : 505 - 526
  • [35] On sequential and parallel non-monotone derivative-free algorithms for box constrained optimization
    Garcia-Palomares, Ubaldo M.
    Garcia-Urrea, Ildemaro J.
    Rodriguez-Hernandez, Pedro S.
    OPTIMIZATION METHODS & SOFTWARE, 2013, 28 (06) : 1233 - 1261
  • [36] Derivative-free methods for mixed-integer nonsmooth constrained optimization
    Giovannelli, Tommaso
    Liuzzi, Giampaolo
    Lucidi, Stefano
    Rinaldi, Francesco
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 82 (02) : 293 - 327
  • [37] Derivative-Free Methods for Mixed-Integer Constrained Optimization Problems
    Giampaolo Liuzzi
    Stefano Lucidi
    Francesco Rinaldi
    Journal of Optimization Theory and Applications, 2015, 164 : 933 - 965
  • [38] Derivative-Free Methods for Mixed-Integer Constrained Optimization Problems
    Liuzzi, Giampaolo
    Lucidi, Stefano
    Rinaldi, Francesco
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 164 (03) : 933 - 965
  • [39] Derivative-free methods for mixed-integer nonsmooth constrained optimization
    Tommaso Giovannelli
    Giampaolo Liuzzi
    Stefano Lucidi
    Francesco Rinaldi
    Computational Optimization and Applications, 2022, 82 : 293 - 327
  • [40] Derivative-free methods for bound constrained mixed-integer optimization
    G. Liuzzi
    S. Lucidi
    F. Rinaldi
    Computational Optimization and Applications, 2012, 53 : 505 - 526