Late-Time Mixing Sensitivity to Initial Broadband Surface Roughness in High-Energy-Density Shear Layers

被引:27
作者
Flippo, K. A. [1 ]
Doss, F. W. [2 ]
Kline, J. L. [1 ]
Merritt, E. C. [1 ]
Capelli, D. [3 ]
Cardenas, T. [3 ]
DeVolder, B. [4 ]
Fierro, F. [3 ]
Huntington, C. M. [5 ]
Kot, L. [1 ]
Loomis, E. N. [1 ]
MacLaren, S. A. [5 ]
Murphy, T. J. [1 ]
Nagel, S. R. [5 ]
Perry, T. S. [1 ]
Randolph, R. B. [3 ]
Rivera, G. [3 ]
Schmidt, D. W. [3 ]
机构
[1] Los Alamos Natl Lab, Div Phys, Plasma Phys, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Theoret Design Div, Los Alamos, NM 87545 USA
[3] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA
[4] Los Alamos Natl Lab, Computat Phys Div, Los Alamos, NM 87545 USA
[5] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
RAYLEIGH-TAYLOR INSTABILITY; TURBULENT;
D O I
10.1103/PhysRevLett.117.225001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using a large volume high-energy-density fluid shear experiment (8.5 cm(3)) at the National Ignition Facility, we have demonstrated for the first time the ability to significantly alter the evolution of a supersonic sheared mixing layer by controlling the initial conditions of that layer. By altering the initial surface roughness of the tracer foil, we demonstrate the ability to transition the shear mixing layer from a highly ordered system of coherent structures to a randomly ordered system with a faster growing mix layer, indicative of strong mixing in the layer at a temperature of several tens of electron volts and at near solid density. Simulations using a turbulent-mix model show good agreement with the experimental results and poor agreement without turbulent mix.
引用
收藏
页数:6
相关论文
共 46 条
[1]   Hypersonic boundary-layer trip development for Hyper-X [J].
Berry, SA ;
Auslender, AH ;
Dilley, AD ;
Calleja, JF .
JOURNAL OF SPACECRAFT AND ROCKETS, 2001, 38 (06) :853-864
[2]  
Besnard D. C., 1987, LA10911MS LOS AL NAT
[3]  
Beuther H, 2014, Protostars & planets VI
[4]   DENSITY EFFECTS AND LARGE STRUCTURE IN TURBULENT MIXING LAYERS [J].
BROWN, GL ;
ROSHKO, A .
JOURNAL OF FLUID MECHANICS, 1974, 64 (JUL24) :775-&
[5]   A strategy for reducing stagnation phase hydrodynamic instability growth in inertial confinement fusion implosions [J].
Clark, D. S. ;
Robey, H. F. ;
Smalyuk, V. A. .
PHYSICS OF PLASMAS, 2015, 22 (05)
[6]   MEASUREMENT OF RAYLEIGH-TAYLOR INSTABILITY IN A LASER-ACCELERATED TARGET [J].
COLE, AJ ;
KILKENNY, JD ;
RUMSBY, PT ;
EVANS, RG ;
HOOKER, CJ ;
KEY, MH .
NATURE, 1982, 299 (5881) :329-331
[7]   THE MIXING LAYER - DETERMINISTIC MODELS OF A TURBULENT-FLOW .2. THE ORIGIN OF THE 3-DIMENSIONAL MOTION [J].
CORCOS, GM ;
LIN, SJ .
JOURNAL OF FLUID MECHANICS, 1984, 139 (FEB) :67-95
[8]   Organized large structure in the post-transition mixing layer. Part 1. Experimental evidence [J].
D'Ovidio, A. ;
Coats, C. M. .
JOURNAL OF FLUID MECHANICS, 2013, 737 :466-498
[9]   MIXING LAYER AT HIGH REYNOLDS-NUMBER - LARGE-STRUCTURE DYNAMICS AND ENTRAINMENT [J].
DIMOTAKIS, PE ;
BROWN, GL .
JOURNAL OF FLUID MECHANICS, 1976, 78 (DEC7) :535-&
[10]   The mixing transition in turbulent flows [J].
Dimotakis, PE .
JOURNAL OF FLUID MECHANICS, 2000, 409 :69-98