Robust reduced-rank modeling via rank regression

被引:14
作者
Zhao, Weihua [1 ]
Lian, Heng [2 ]
Ma, Shujie [3 ]
机构
[1] Nantong Univ, Sch Sci, Nantong, Peoples R China
[2] City Univ Hong Kong, Dept Math, Kowloon 999077, Hong Kong, Peoples R China
[3] Univ Calif Riverside, Dept Stat, Riverside, CA 92521 USA
关键词
Efficiency; Rank constraint; Rank regression; Robust estimator; COMPOSITE QUANTILE REGRESSION; HIGH-DIMENSIONAL MATRICES; VARIABLE SELECTION; LINEAR-MODELS; U-PROCESSES; ESTIMATORS; EFFICIENT;
D O I
10.1016/j.jspi.2016.08.009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
There are many applications in which several response variables are predicted with a common set of predictors. To take into account the possible correlations among the responses, estimators with restricted rank were introduced. However, existing methods for performing reduced-rank regression are often based on least squares procedure, which is adversely affected by outliers or heavy-tailed error distributions. In this work, we propose robust reduced-rank estimator via rank regression. As in univariate regression, the new method is much more efficient compared to its least-squares-based counterpart for many heavy-tailed distributions and is thus more robust. Asymptotic properties of the estimator are established and numerical studies are carried out to demonstrate its finite sample performance. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 28 条
[1]   ESTIMATING LINEAR RESTRICTIONS ON REGRESSION COEFFICIENTS FOR MULTIVARIATE NORMAL DISTRIBUTIONS [J].
ANDERSON, TW .
ANNALS OF MATHEMATICAL STATISTICS, 1951, 22 (03) :327-351
[2]  
Anderson TW, 1999, ANN STAT, V27, P1141
[3]  
[Anonymous], 2010, LECT NOTES STAT, DOI DOI 10.1007/978-1-4419-0468-3
[4]  
[Anonymous], ROBUST NONPARAMETRIC
[5]   JOINT VARIABLE AND RANK SELECTION FOR PARSIMONIOUS ESTIMATION OF HIGH-DIMENSIONAL MATRICES [J].
Bunea, Florentina ;
She, Yiyuan ;
Wegkamp, Marten H. .
ANNALS OF STATISTICS, 2012, 40 (05) :2359-2388
[6]   OPTIMAL SELECTION OF REDUCED RANK ESTIMATORS OF HIGH-DIMENSIONAL MATRICES [J].
Bunea, Florentina ;
She, Yiyuan ;
Wegkamp, Marten H. .
ANNALS OF STATISTICS, 2011, 39 (02) :1282-1309
[7]   Reduced rank regression via adaptive nuclear norm penalization [J].
Chen, Kun ;
Dong, Hongbo ;
Chan, Kung-Sik .
BIOMETRIKA, 2013, 100 (04) :901-920
[8]   Sparse Reduced-Rank Regression for Simultaneous Dimension Reduction and Variable Selection [J].
Chen, Lisha ;
Huang, Jianhua Z. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (500) :1533-1545
[9]   The Framingham Heart Study 100K SNP genome-wide association study resource: overview of 17 phenotype working group reports [J].
Cupples, L. Adrienne ;
Arruda, Heather T. ;
Benjamin, Emelia J. ;
D'Agostino, Ralph B., Sr. ;
Demissie, Serkalem ;
DeStefano, Anita L. ;
Dupuis, Josee ;
Falls, Kathleen M. ;
Fox, Caroline S. ;
Gottlieb, Daniel J. ;
Govindaraju, Diddahally R. ;
Guo, Chao-Yu ;
Heard-Costa, Nancy L. ;
Hwang, Shih-Jen ;
Kathiresan, Sekar ;
Kiel, Douglas P. ;
Laramie, Jason M. ;
Larson, Martin G. ;
Levy, Daniel ;
Liu, Chun-Yu ;
Lunetta, Kathryn L. ;
Mailman, Matthew D. ;
Manning, Alisa K. ;
Meigs, James B. ;
Murabito, Joanne M. ;
Newton-Cheh, Christopher ;
O'Connor, George T. ;
O'Donnell, Christopher J. ;
Pandey, Mona ;
Seshadri, Sudha ;
Vasan, Ramachandran S. ;
Wang, Zhen Y. ;
Wilk, Jemma B. ;
Wolf, Philip A. ;
Yang, Qiong ;
Atwood, Larry D. .
BMC MEDICAL GENETICS, 2007, 8
[10]   RANK-BASED METHODS FOR MULTIVARIATE LINEAR-MODELS [J].
DAVIS, JB ;
MCKEAN, JW .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) :245-251