Synthesis of micro-nano hierarchical structured LiFePO4/C composite with both superior high-rate performance and high tap density

被引:59
作者
Wang, Meng [1 ]
Yang, Yong [2 ]
Zhang, Youxiang [1 ]
机构
[1] Wuhan Univ, Coll Chem & Mol Sci, Wuhan 430072, Peoples R China
[2] Xiamen Univ, Dept Chem, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
基金
美国国家科学基金会;
关键词
CATHODE MATERIALS; PHOSPHO-OLIVINES; HOLLOW SPHERES; LITHIUM; CARBON; NANOCOMPOSITE; SIZE; IRON;
D O I
10.1039/c1nr10950b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Efforts were made to synthesize LiFePO4/C composites showing both high rate capability and high tap density. First, monoclinic phase FePO4 center dot 2H(2)O with micro-nano hierarchical structures are synthesized using a hydrothermal method, which are then lithiated to LiFePO4/C also with hierarchical structures by a simple rheological phase method. The primary structures of FePO(4 center dot)2H(2)O are nanoplates with similar to 30 nm thickness, and the secondary structures of the materials are intertwisted micro-scale rings. The LiFePO4/C materials lithiated from these specially structured precursors also have hierarchical structures, showing discharge capacities of more than 120, 110, and 90 mAh g(-1) at rates of 5 C, 10 C and 20 C, respectively, and high tap density of 1.4 g cm(-3) as cathode materials for lithium ion batteries. Since tap density is an important factor that needs to be considered in fabricating real batteries in industry, these hierarchical structured LiFePO4/C moves closer to real and large-scale applications.
引用
收藏
页码:4434 / 4439
页数:6
相关论文
共 30 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[3]   Hydrothermal synthesis of lithium iron phosphate [J].
Chen, Jiajun ;
Whittingham, M. Stanley .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (05) :855-858
[4]   SnO2 Nanoparticles with Controlled Carbon Nanocoating as High-Capacity Anode Materials for Lithium-Ion Batteries [J].
Chen, Jun Song ;
Cheah, Yan Ling ;
Chen, Yuan Ting ;
Jayaprakash, N. ;
Madhavi, Srinivasan ;
Yang, Yan Hui ;
Lou, Xiong Wen .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (47) :20504-20508
[5]   Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density [J].
Chen, ZH ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (09) :A1184-A1189
[6]   Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries [J].
Choi, Daiwon ;
Kumta, Prashant N. .
JOURNAL OF POWER SOURCES, 2007, 163 (02) :1064-1069
[7]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[8]   A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode [J].
Croce, F ;
D'Epifanio, A ;
Hassoun, J ;
Deptula, A ;
Olczac, T ;
Scrosati, B .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (03) :A47-A50
[9]   Size effects on carbon-free LiFePO4 powders [J].
Delacourt, C. ;
Poizot, P. ;
Levasseur, S. ;
Masquelier, C. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (07) :A352-A355
[10]   Wired porous cathode materials:: A novel concept for synthesis of LiFePO4 [J].
Dominko, Robert ;
Bele, Marjan ;
Goupil, Jean-Michel ;
Gaberscek, Miran ;
Hanzel, Darko ;
Arcon, Iztok ;
Jamnik, Janez .
CHEMISTRY OF MATERIALS, 2007, 19 (12) :2960-2969