Transverse-mode coupling and diffraction loss in tunable Fabry-Perot microcavities

被引:60
作者
Benedikter, Julia [1 ,2 ]
Huemmer, Thomas [1 ,2 ]
Mader, Matthias [1 ,2 ]
Schlederer, Benedikt [1 ,2 ]
Reichel, Jakob [3 ]
Haensch, Theodor W. [1 ,2 ]
Hunger, David [1 ,2 ]
机构
[1] Univ Munich, Fak Phys, D-80799 Munich, Germany
[2] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[3] Univ Paris 06, CNRS, Lab Kastler Brossel, F-75005 Paris, France
关键词
Fabry-Perot resonators; fiber cavities; diffraction; mode coupling; OPTICAL CAVITY; FINESSE;
D O I
10.1088/1367-2630/17/5/053051
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report on measurements and modeling of the mode structure of tunable Fabry-Perot optical microcavities with imperfect mirrors. We find that non-spherical mirror shape and finite mirror size leave the fundamental mode mostly unaffected, but lead to loss, mode deformation, and shifted resonance frequencies at particular mirror separations. For small mirror diameters, the useful cavity length is limited to values significantly below the expected stability range. We explain the observations by resonant coupling between different transverse modes of the cavity and mode-dependent diffraction loss. A model based on resonant state expansion that takes into account the measured mirror profile can reproduce the measurements and identify the parameter regime where detrimental effects of mode mixing are avoided.
引用
收藏
页数:9
相关论文
共 34 条
[1]   Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity [J].
Albrecht, Roland ;
Bommer, Alexander ;
Pauly, Christoph ;
Muecklich, Frank ;
Schell, Andreas W. ;
Engel, Philip ;
Schroeder, Tim ;
Benson, Oliver ;
Reichel, Jakob ;
Becher, Christoph .
APPLIED PHYSICS LETTERS, 2014, 105 (07)
[2]   Coupling of a Single Nitrogen-Vacancy Center in Diamond to a Fiber-Based Microcavity [J].
Albrecht, Roland ;
Bommer, Alexander ;
Deutsch, Christian ;
Reichel, Jakob ;
Becher, Christoph .
PHYSICAL REVIEW LETTERS, 2013, 110 (24)
[3]   A tunable microcavity [J].
Barbour, Russell J. ;
Dalgarno, Paul A. ;
Curran, Arran ;
Nowak, Kris M. ;
Baker, Howard J. ;
Hall, Denis R. ;
Stoltz, Nick G. ;
Petroff, Pierre M. ;
Warburton, Richard J. .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (05)
[4]   Ultrasmooth microfabricated mirrors for quantum information [J].
Biedermann, G. W. ;
Benito, F. M. ;
Fortier, K. M. ;
Stick, D. L. ;
Loyd, T. K. ;
Schwindt, P. D. D. ;
Nakakura, C. Y. ;
Jarecki, R. L., Jr. ;
Blain, M. G. .
APPLIED PHYSICS LETTERS, 2010, 97 (18)
[5]   Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip [J].
Colombe, Yves ;
Steinmetz, Tilo ;
Dubois, Guilhem ;
Linke, Felix ;
Hunger, David ;
Reichel, Jakob .
NATURE, 2007, 450 (7167) :272-U9
[6]   A hemispherical, high-solid-angle optical micro-cavity for cavity-QED studies [J].
Cui, GQ ;
Hannigan, JM ;
Loeckenhoff, R ;
Matinaga, FM ;
Raymer, MG ;
Bhongale, S ;
Holland, M ;
Mosor, S ;
Chatterjee, S ;
Gibbs, HM ;
Khitrova, G .
OPTICS EXPRESS, 2006, 14 (06) :2289-2299
[7]   Controlling the emission from semiconductor quantum dots using ultra-small tunable optical microcavities [J].
Di, Ziyun ;
Jones, Helene V. ;
Dolan, Philip R. ;
Fairclough, Simon M. ;
Wincott, Matthew B. ;
Fill, Johnny ;
Hughes, Gareth M. ;
Smith, Jason M. .
NEW JOURNAL OF PHYSICS, 2012, 14
[8]   Femtoliter tunable optical cavity arrays [J].
Dolan, Philip R. ;
Hughes, Gareth M. ;
Grazioso, Fabio ;
Patton, Brian R. ;
Smith, Jason M. .
OPTICS LETTERS, 2010, 35 (21) :3556-3558
[9]   Fluctuating nanomechanical system in a high finesse optical microcavity [J].
Favero, Ivan ;
Stapfner, Sebastian ;
Hunger, David ;
Paulitschke, Philipp ;
Reichel, Jakob ;
Lorenz, Heribert ;
Weig, Eva M. ;
Karrai, Khaled .
OPTICS EXPRESS, 2009, 17 (15) :12813-12820
[10]   Microcavity morphology optimization [J].
Ferdous, Fahmida ;
Demchenko, Alena A. ;
Vyatchanin, Sergey P. ;
Matsko, Andrey B. ;
Maleki, Lute .
PHYSICAL REVIEW A, 2014, 90 (03)