Mn nanoparticles enhanced dehydrogenation and hydrogenation kinetics of MgH2 for hydrogen storage

被引:51
作者
Chen, Yan [1 ]
Zhang, Hao-yu [1 ]
Wu, Fu-ying [2 ]
Sun, Ze [1 ]
Zheng, Jia-guang [1 ]
Zhang, Liu-ting [1 ]
Chen, Li-xin [3 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Energy & Power, Zhenjiang 212003, Jiangsu, Peoples R China
[2] Jiangsu Univ Sci & Technol, Anal & Testing Ctr, Zhenjiang 212003, Jiangsu, Peoples R China
[3] Zhejiang Univ, Dept Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
hydrogen storage material; magnesium hydride; Mn nanoparticles; catalytic mechanism; reversibility; MAGNESIUM-BASED MATERIALS; ENERGY; NI; THERMODYNAMICS; MICROSTRUCTURE; SORPTION; FE; 1ST-PRINCIPLES; CATALYSTS; OXIDES;
D O I
10.1016/S1003-6326(21)65743
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Mn nanoparticles (nano-Mn) were successfully synthesized and doped into MgH2 to improve its de/hydrogenation properties. Compared with MgH2, the onset desorption temperature of 10 wt.% nano-Mn modified MgH2 was decreased to 175 degrees C and 6.7, 6.5 and 6.1 wt.% hydrogen could be released within 5, 10 and 25 min at 300, 275 and 250 degrees C, respectively. Besides, the composite started to take up hydrogen at room temperature and absorbed 2.0 wt.% hydrogen within 30 min at low temperature of 50 degrees C. The hydrogenation activation energy of MgH2 was reduced from (72.5 +/- 2.7) to (18.8 +/- 0.2) kJ/mol after doping with 10 wt.% nano-Mn. In addition, the MgH2 + 10 wt.% nano-Mn composite exhibited superior cyclic property, maintaining 92% initial capacity after 20 cycles.
引用
收藏
页码:3469 / 3477
页数:9
相关论文
共 51 条
[1]   Hydrogen energy, economy and storage: Review and recommendation [J].
Abe, J. O. ;
Popoola, A. P. I. ;
Ajenifuja, E. ;
Popoola, O. M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (29) :15072-15086
[2]  
ADAM S, 2011, APPL PHYS A-MATER, V104, P235
[3]   Kinetics of phase change I - General theory [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1939, 7 (12) :1103-1112
[4]   Magnesium nanocrystal-polymer composites: A new platform for designer hydrogen storage materials [J].
Bardhan, Rizia ;
Ruminski, Anne M. ;
Brand, Alyssa ;
Urban, Jeffrey J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (12) :4882-4895
[5]   High surface area niobium oxides as catalysts for improved hydrogen sorption properties of ball milled MgH2 [J].
Bhat, V. V. ;
Rougier, A. ;
Aymard, L. ;
Nazri, G. A. ;
Tarascon, J. -M. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2008, 460 (1-2) :507-512
[6]   Recent advances in nanomaterial-based solid-state hydrogen storage [J].
Boateng, Emmanuel ;
Chen, Aicheng .
MATERIALS TODAY ADVANCES, 2020, 6
[7]   Hydrogenation properties and kinetic study of MgH2-x wt% AC nanocomposites prepared by ball milling [J].
Chawla, Kanhaiya ;
Yadav, Deepak Kumar ;
Bajpai, Abhinav ;
Kumar, Sushant ;
Lal, Chhagan .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (04) :3872-3879
[8]   Boosting low-temperature de/re-hydrogenation performances of MgH2 with Pd-Ni bimetallic nanoparticles supported by mesoporous carbon [J].
Cheng, Honghui ;
Chen, Gang ;
Zhang, Yao ;
Zhu, Yunfeng ;
Li, Liquan .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (21) :10777-10787
[9]   Review of magnesium hydride-based materials: development and optimisation [J].
Crivello, J. -C. ;
Dam, B. ;
Denys, R. V. ;
Dornheim, M. ;
Grant, D. M. ;
Huot, J. ;
Jensen, T. R. ;
de Jongh, P. ;
Latroche, M. ;
Milanese, C. ;
Milcius, D. ;
Walker, G. S. ;
Webb, C. J. ;
Zlotea, C. ;
Yartys, V. A. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2016, 122 (02) :1-20
[10]   Hydrogen storage in magnesium-based hydrides and hydride composites [J].
Dornheim, M. ;
Doppiu, S. ;
Barkhordarian, G. ;
Boesenberg, U. ;
Klassen, T. ;
Gutfleisch, O. ;
Bormann, R. .
SCRIPTA MATERIALIA, 2007, 56 (10) :841-846