ON THE k-SYMPLECTIC, k-COSYMPLECTIC AND MULTISYMPLECTIC FORMALISMS OF CLASSICAL FIELD THEORIES

被引:28
作者
Roman-Roy, Narciso [1 ]
Rey, Angel M. [2 ]
Salgado, Modesto [2 ]
Vilarino, Silvia [3 ]
机构
[1] Dept Matemat Aplicada 4, Barcelona 08034, Spain
[2] Univ Santiago de Compostela, Fac Matemat, Dept Xeometria & Topoloxia, Santiago De Compostela 15706, Spain
[3] Univ A Coruna, Fac Ciencias, Dept Matemat, La Coruna 15071, Spain
关键词
k-Symplectic manifolds; k-cosymplectic manifolds; multisymplectic manifolds; Hamiltonian and Lagrangian field theories; HAMILTONIAN-FORMALISM; GUNTHERS FORMALISM; EQUATIONS; GEOMETRY; CALCULUS;
D O I
10.3934/jgm.2011.3.113
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The objective of this work is twofold: First, we analyze the relation between the k-cosymplectic and the k-symplectic Hamiltonian and Lagrangian formalisms in classical field theories. In particular, we prove the equivalence between k-symplectic field theories and the so-called autonomous k-cosymplectic field theories, extending in this way the description of the symplectic formalism of autonomous systems as a particular case of the cosymplectic formalism in non-autonomous mechanics. Furthermore, we clarify some aspects of the geometric character of the solutions to the Hamilton-de Donder-Weyl and the Euler-Lagrange equations in these formalisms. Second, we study the equivalence between k-cosymplectic and a particular kind of multisymplectic Hamiltonian and Lagrangian field theories (those where the configuration bundle of the theory is trivial).
引用
收藏
页码:113 / 137
页数:25
相关论文
共 37 条
  • [11] DELEON M, 2002, ARXIVMATHPH0208036V1
  • [12] DELEON M, 1996, P NEW DEV DIFF GEOM, P291
  • [13] Dieudonne J., 1969, FDN MODERN ANAL
  • [14] Multivector fields and connections: Setting Lagrangian equations in field theories
    Echeverria-Enriquez, A
    Munoz-Lecanda, MC
    Roman-Roy, N
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (09) : 4578 - 4603
  • [15] Multivector field formulation of Hamiltonian field theories:: equations and symmetries
    Echeverría-Enríquez, A
    Muñoz-Lecanda, MC
    Román-Roy, N
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (48): : 8461 - 8484
  • [16] Geometry of multisymplectic Hamiltonian first-order field theories
    Echeverria-Enríquez, A
    Muñoz-Lecanda, MC
    Román-Roy, N
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (11) : 7402 - 7444
  • [17] Extended Hamiltonian systems in multisymplectic field theories
    Echeverria-Enriquez, Arturo
    de Leon, Manuel
    Munoz-Lecanda, Miguel C.
    Roman-Roy, Narciso
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (11)
  • [18] Covariant Hamilton equations for field theory
    Giachetta, G
    Mangiarotti, L
    Sardanashvily, G
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (38): : 6629 - 6642
  • [19] Giachetta G., 1997, New Lagrangian and Hamiltonian Methods in Field Theory
  • [20] GOTAY MJ, 1999, ARXIVPHYSICS9801019V