Modeling Thermoelectric Performance in Nanoporous Nanocrystalline Silicon

被引:7
作者
Oliveira, Laura Rita de Sousa [1 ]
Vargiamidis, Vassilios [1 ]
Neophytou, Neophytos [1 ]
机构
[1] Univ Warwick, Sch Engn, Coventry CV4 7AL, W Midlands, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
Theory; simulation; phonon transport; electron transport; power factor; thermal conductivity; thermoelectrics; molecular dynamics; non-equilibrium Green's function; hierarchical nanostructuring; Seebeck coefficient; ZT; THERMAL-CONDUCTIVITY; POWER-FACTOR; IRREVERSIBLE-PROCESSES; CHARGE-TRANSPORT; HEAT-TRANSFER; ENHANCEMENT; SIMULATION;
D O I
10.1109/TNANO.2019.2935876
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Introducing hierarchical disorder from multiple defects into materials through nanostructuring is one of the most promising directions to achieve extremely low thermal conductivities and thus improve thermoelectric performance. The success of nanostructuring relies on charge carriers having shorter mean-free-paths than phonons so that the latter can be selectively scattered. Nevertheless, introducing disorder into a material often comes at the expense of scattering charge carriers as well as phonons. In order to determine the tradeoff between the degradation of the lattice thermal conductivity and of the power factor due to this, we perform a theoretical investigation of both phonon and electron transport in nanocrystalline, nanoporous Si geometries. We use molecular dynamics for phonon transport calculations and the non-equilibrium Green's function method for electronic transport. We report on the engineering tradeoff that the porosity (number of pores and their in-between distance) has on the overall thermoelectric performance for the material optimization. We indeed find that the reduction in thermal conductivity is stronger compared to the reduction in the power factor, for the low porosities considered in this study (up to 5%), and that the ZT figure of merit can experience a large increase, especially when grain boundaries are included, compared to just nanoporosity.
引用
收藏
页码:896 / 903
页数:8
相关论文
共 49 条
[1]   Boosting thermoelectric performance of p-type SiGe alloys through in-situ metallic YSi2 nanoinclusions [J].
Ahmad, Sajid ;
Singh, Ajay ;
Bohra, Anil ;
Basu, Ranita ;
Bhattacharya, Shovit ;
Bhatt, Ranu ;
Meshram, K. N. ;
Roy, Mainak ;
Sarkar, Shaibal K. ;
Hayakawa, Y. ;
Debnath, A. K. ;
Aswal, D. K. ;
Gupta, S. K. .
NANO ENERGY, 2016, 27 :282-297
[2]   Dislocation loops as a mechanism for thermoelectric power factor enhancement in silicon nano-layers [J].
Bennett, Nick S. ;
Byrne, Daragh ;
Cowley, Aidan ;
Neophytou, Neophytos .
APPLIED PHYSICS LETTERS, 2016, 109 (17)
[3]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[4]  
Boukai A.I., 2011, MAT SUSTAINABLE ENER, P116
[5]   PHASE-DIAGRAM OF SILICON BY MOLECULAR-DYNAMICS [J].
BROUGHTON, JQ ;
LI, XP .
PHYSICAL REVIEW B, 1987, 35 (17) :9120-9127
[6]   Quantum modeling of thermoelectric properties of Si/Ge/Si superlattices [J].
Bulusu, Anuradha ;
Walker, D. Greg .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2008, 55 (01) :423-429
[7]   Nanoscale heat transfer and nanostructured thermoelectrics [J].
Chen, Gang .
IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 2006, 29 (02) :238-246
[8]   Prospects of Thin-Film Thermoelectric Devices for Hot-Spot Cooling and On-Chip Energy Harvesting [J].
Choday, Sri Harsha ;
Lundstrom, Mark S. ;
Roy, Kaushik .
IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2013, 3 (12) :2059-2067
[9]   Molecular dynamics study of the thermal conductivity of amorphous nanoporous silica [J].
Coquil, Thomas ;
Fang, Jin ;
Pilon, Laurent .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2011, 54 (21-22) :4540-4548
[10]   Enhancing thermoelectric properties of single-walled carbon nanotubes using halide compounds at room temperature and above [J].
Kumanek, Bogumila ;
Stando, Grzegorz ;
Stando, Pawel ;
Matuszek, Karolina ;
Milowska, Karolina Z. ;
Krzywiecki, Maciej ;
Gryglas-Borysiewicz, Marta ;
Ogorzalek, Zuzanna ;
Payne, Mike C. ;
MacFarlane, Douglas ;
Janas, Dawid .
SCIENTIFIC REPORTS, 2021, 11 (01)