Interaction of modulated pulses in the nonlinear Schrodinger equation with periodic potential

被引:18
作者
Giannoulis, Johannes [3 ]
Mielke, Alexander [4 ,5 ]
Sparber, Christof [1 ,2 ]
机构
[1] Univ Vienna, Wolfgang Pauli Inst Vienna, A-1090 Vienna, Austria
[2] Univ Vienna, Fac Math, A-1090 Vienna, Austria
[3] Tech Univ Munich, Zentrum Math, D-85747 Garching, Germany
[4] Weierstrass Inst Angew Anal & Stochast, D-10117 Berlin, Germany
[5] Humboldt Univ, Inst Math, D-12489 Berlin, Germany
关键词
nonlinear Schrodinger equation; Bloch eigenvalue problem; two scale asymptotics; modulation equations; four-wave interaction;
D O I
10.1016/j.jde.2008.05.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a cubic nonlinear Schrodinger equation with periodic potential. In a semiclassical scaling the nonlinear interaction of modulated pulses concentrated in one or several Bloch bands is studied. The notion of closed mode systems is introduced which allows for the rigorous derivation of a finite system of amplitude equations describing the macroscopic interaction of these pulses. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:939 / 963
页数:25
相关论文
共 30 条
[1]   Modeling of wave resonances in low-contrast photonic crystals [J].
Agueev, D ;
Pelinovsky, D .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2005, 65 (04) :1101-1129
[2]   Spatial four wave mixing in nonlinear periodic structures [J].
Bartal, Guy ;
Manela, Ofer ;
Segev, Mordechai .
PHYSICAL REVIEW LETTERS, 2006, 97 (07)
[3]  
Bensoussan A., 1978, Asymptotic analysis for periodic structures
[4]  
Bloch F., 1929, Z. Phys, V52, P555, DOI DOI 10.1007/BF01339455
[5]  
BLOUNT EI, 1962, SOLID STATE PHYS, V13, P305
[6]   Justification of the nonlinear Schrodinger equation in spatially periodic media [J].
Busch, Kurt ;
Schneider, Guido ;
Tkeshelashvili, Lasha ;
Uecker, Hannes .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2006, 57 (06) :905-939
[7]   Parametric amplification of scattered atom pairs [J].
Campbell, GK ;
Mun, J ;
Boyd, M ;
Streed, EW ;
Ketterle, W ;
Pritchard, DE .
PHYSICAL REVIEW LETTERS, 2006, 96 (02)
[8]   Semiclassical asymptotics for weakly nonlinear Bloch waves [J].
Carles, R ;
Markowich, PA ;
Sparber, C .
JOURNAL OF STATISTICAL PHYSICS, 2004, 117 (1-2) :343-375
[9]   Bose-Einstein condensates in an optical lattice [J].
Choi, DI ;
Niu, Q .
PHYSICAL REVIEW LETTERS, 1999, 82 (10) :2022-2025
[10]   Dynamics and stability of Bose-Einstein condensates: The nonlinear Schrodinger equation with periodic potential [J].
Deconinck, B ;
Frigyik, BA ;
Kutz, JN .
JOURNAL OF NONLINEAR SCIENCE, 2002, 12 (03) :169-205