Density Contrast Sedimentation Velocity for the Determination of Protein Partial-Specific Volumes

被引:42
作者
Brown, Patrick H. [1 ]
Balbo, Andrea
Zhao, Huaying [1 ]
Ebel, Christine [2 ,3 ,4 ]
Schuck, Peter [1 ]
机构
[1] Natl Inst Biomed Imaging & Bioengn, Dynam Macromol Assembly Sect, Lab Cellular Imaging & Macromol Biophys, NIH, Bethesda, MD 20892 USA
[2] Univ Grenoble 1, Inst Biol Struct, Grenoble, France
[3] CNRS, Grenoble, France
[4] Commisariat Energie Atom, Grenoble, France
基金
美国国家卫生研究院;
关键词
HEAVY-OXYGEN WATER; ANALYTICAL ULTRACENTRIFUGATION; MEMBRANE-PROTEINS; DIFFERENTIAL SEDIMENTATION; SOLVENT INTERACTIONS; PHYSICAL PROPERTIES; NEUTRON-SCATTERING; DETERGENT BINDING; MACROMOLECULES; EQUILIBRIUM;
D O I
10.1371/journal.pone.0026221
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The partial-specific volume of proteins is an important thermodynamic parameter required for the interpretation of data in several biophysical disciplines. Building on recent advances in the use of density variation sedimentation velocity analytical ultracentrifugation for the determination of macromolecular partial-specific volumes, we have explored a direct global modeling approach describing the sedimentation boundaries in different solvents with a joint differential sedimentation coefficient distribution. This takes full advantage of the influence of different macromolecular buoyancy on both the spread and the velocity of the sedimentation boundary. It should lend itself well to the study of interacting macromolecules and/or heterogeneous samples in microgram quantities. Model applications to three protein samples studied in either H2O, or isotopically enriched H-2 O-18 mixtures, indicate that partial-specific volumes can be determined with a statistical precision of better than 0.5%, provided signal/noise ratios of 50-100 can be achieved in the measurement of the macromolecular sedimentation velocity profiles. The approach is implemented in the global modeling software SEDPHAT.
引用
收藏
页数:16
相关论文
共 88 条
[1]  
Aragon S, 2011, METHODS
[3]   Hydrodynamic Characterization of Surfactant Encapsulated Carbon Nanotubes Using an Analytical Ultracentrifuge [J].
Arnold, Michael S. ;
Suntivich, Jin ;
Stupp, Samuel I. ;
Hersam, Mark C. .
ACS NANO, 2008, 2 (11) :2291-2300
[4]  
Bevington P. R., 2002, Data reduction and error analysis for the physical sciences
[5]   A new adaptive grid-size algorithm for the simulation of sedimentation velocity profiles in analytical ultracentrifugation [J].
Brown, Patrick H. ;
Schuck, Peter .
COMPUTER PHYSICS COMMUNICATIONS, 2008, 178 (02) :105-120
[6]   On the analysis of sedimentation velocity in the study of protein complexes [J].
Brown, Patrick H. ;
Balbo, Andrea ;
Schuck, Peter .
EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2009, 38 (08) :1079-1099
[7]  
Brown Patrick H, 2008, Curr Protoc Immunol, VChapter 18, DOI 10.1002/0471142735.im1815s81
[8]   THERMODYNAMIC ANALYSIS OF MULTICOMPONENT SOLUTIONS [J].
CASASSA, EF ;
EISENBERG, H .
ADVANCES IN PROTEIN CHEMISTRY, 1964, 19 :287-395
[9]   Oligomeric structure of virion-associated and soluble forms of the simian immunodeficiency virus envelope protein in the prefusion activated conformation [J].
Center, RJ ;
Schuck, P ;
Leapman, RD ;
Arthur, LO ;
Earl, PL ;
Moss, B ;
Lebowitz, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (26) :14877-14882
[10]   STUDIES ON THE VALIDITY OF THE EINSTEIN VISCOSITY LAW AND STOKES LAW OF SEDIMENTATION [J].
CHENG, PY ;
SCHACHMAN, HK .
JOURNAL OF POLYMER SCIENCE, 1955, 16 (81) :19-30