Multilevel Monte Carlo methods and lower-upper bounds in initial margin computations

被引:2
作者
Bourgey, Florian [1 ]
De Marco, Stefano [1 ]
Gobet, Emmanuel [1 ]
Zhou, Alexandre [2 ]
机构
[1] Ecole Polytech, Inst Potytech Paris, CNRS, Ctr Math Appl CMAP, Route Sactay, F-91128 Pataiseau, France
[2] Univ Paris Est, CERMICS ENPC, F-77455 Marne La Vallee, France
关键词
Multilevel Monte Carlo; nested expectation; upper-lower bounds; initial margin; FUNCTIONALS; SIMULATION;
D O I
10.1515/mcma-2020-2062
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The multilevel Monte Carlo (MLMC) method developed by M. B. Giles [Multilevel Monte Carlo path simulation, Oper. Res. 56 (2008), no. 3, 607-617] has a natural application to the evaluation of nested expectations E[g(IE[f(X, Y)vertical bar X]) 1, where f, g are functions and (X, Y) a couple of independent random variables. Apart from the pricing of American -type derivatives, such computations arise in a large variety of risk valuations (VaR or CVaR of a portfolio, CVA), and in the assessment of margin costs for centrally cleared portfolios. In this work, we focus on the computation of initial margin. We analyze the properties of corresponding MLMC estimators, for which we provide results of asymptotic optimality; at the technical level, we have to deal with limited regularity of the outer function g (which might fail to be everywhere differentiable). Parallel to this, we investigate upper and lower bounds for nested expectations as above, in the spirit of primal -dual algorithms for stochastic control problems.
引用
收藏
页码:131 / 161
页数:31
相关论文
共 22 条
[1]  
Agarwal A., 2019, ESAIM P, V65, P1
[2]  
[Anonymous], 2009, ELEMENTS STAT LEARNI, DOI 10.1007/978-0-387-84858-7
[3]  
[Anonymous], 1964, HDB MATH FUNCTIONS F
[4]   On irregular functionals of SDEs and the Euler scheme [J].
Avikainen, Rainer .
FINANCE AND STOCHASTICS, 2009, 13 (03) :381-401
[5]   Estimating security price derivatives using simulation [J].
Broadie, M ;
Glasserman, P .
MANAGEMENT SCIENCE, 1996, 42 (02) :269-285
[6]   Risk Estimation via Regression [J].
Broadie, Mark ;
Du, Yiping ;
Moallemi, Ciamac C. .
OPERATIONS RESEARCH, 2015, 63 (05) :1077-1097
[7]   Multilevel Simulation of Functionals of Bernoulli Random Variables with Application to Basket Credit Derivatives [J].
Bujok, K. ;
Hambly, B. M. ;
Reisinger, C. .
METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2015, 17 (03) :579-604
[8]  
Dieudonne J., 1968, ELEMENTS ANAL, VI
[9]   The inverse of the cumulative standard normal probability function [J].
Dominici, DE .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2003, 14 (04) :281-292
[10]   Multilevel Monte Carlo path simulation [J].
Giles, Michael B. .
OPERATIONS RESEARCH, 2008, 56 (03) :607-617