Direct Evidence for Li Ion Hopping Conduction in Highly Concentrated Sulfolane-Based Liquid Electrolytes

被引:217
作者
Dokko, Kaoru [1 ]
Watanabe, Daiki [1 ]
Ugata, Yosuke [1 ]
Thomas, Morgan L. [1 ]
Tsuzuki, Seiji [2 ]
Shinoda, Wataru [3 ]
Hashimoto, Kei [1 ]
Ueno, Kazuhide [1 ]
Umebayashi, Yasuhiro [4 ]
Watanabe, Masayoshi [1 ]
机构
[1] Yokohama Natl Univ, Dept Chem & Biotechnol, Hodogaya Ku, 79-5 Tokiwadai, Yokohama, Kanagawa 2408501, Japan
[2] Natl Inst Adv Ind Sci & Technol, Res Ctr Computat Design Adv Funct Mat CD FMat, Tsukuba Cent 2,1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan
[3] Nagoya Univ, Dept Mat Chem, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648603, Japan
[4] Niigata Univ, Grad Sch Sci & Technol, Nishi Ku, 8050 Ikarashi,2 No Cho, Niigata 9502181, Japan
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
SULFONE-BASED ELECTROLYTES; IN-SALT ELECTROLYTES; SUPERCONCENTRATED ELECTROLYTES; TRANSFERENCE NUMBER; SOLVATION STRUCTURE; CARBONATE-FREE; FREE-VOLUME; LITHIUM; STABILITY; DIFFUSION;
D O I
10.1021/acs.jpcb.8b09439
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We demonstrate that Li+ hopping conduction, which cannot be explained by conventional models i.e., Onsager's theory and Stokes' law, emerges in highly concentrated liquid electrolytes composed of LiBF4 and sulfolane (SL). Self-diffusion coefficients of Li+ (D-Li), BF4- (D-BF4), and SL (D-SL) were measured with pulsed-field gradient NMR. In the concentrated electrolytes with molar ratios of SL/LiBF4 <= 3, the ratios D-SL/D-Li and D-BF4/D-Li become lower than 1, suggesting faster diffusion of Li+ than SL and BF4-, and thus the evolution of Li+ hopping conduction. X-ray crystallographic analysis of the LiBF4/SL (1:1) solvate revealed that the two oxygen atoms of the sulfone group are involved in the bridging coordination of two different Li+ ions. In addition, the BF4- anion also participates in the bridging coordination of Li+. The Raman spectra of the highly concentrated LiBF4-SL solution suggested that Li+ ions are bridged by SL and BF4- even in the liquid state. Moreover, detailed investigation along with molecular dynamics simulations suggests that Li+ exchanges ligands (SL and BF4-) dynamically in the highly concentrated electrolytes, and Li+ hops from one coordination site to another. The spatial proximity of coordination sites, along with the possible domain structure, is assumed to enable Li+ hopping conduction. Finally, we demonstrate that Li+ hopping suppresses concentration polarization in Li batteries, leading to increased limiting current density and improved rate capability compared to the conventional concentration electrolyte. Identification and rationalization of Li+ ion hopping in concentrated SL electrolytes is expected to trigger a new paradigm of understanding for such unconventional electrolyte systems.
引用
收藏
页码:10736 / 10745
页数:10
相关论文
共 47 条
  • [1] Sulfone-based electrolytes for high-voltage Li-ion batteries
    Abouimrane, A.
    Belharouak, I.
    Amine, K.
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (05) : 1073 - 1076
  • [2] A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries
    Alvarado, Judith
    Schroeder, Marshall A.
    Zhang, Minghao
    Borodin, Oleg
    Gobrogge, Eric
    Olguin, Marco
    Ding, Michael S.
    Gobet, Mallory
    Greenbaum, Steve
    Meng, Ying Shirley
    Xu, Kang
    [J]. MATERIALS TODAY, 2018, 21 (04) : 341 - 353
  • [3] [Anonymous], 1998, ELECTROCHEMISTRY
  • [4] Brinkkötter M, 2018, CHEM COMMUN, V54, P4278, DOI [10.1039/c8cc01416g, 10.1039/C8CC01416G]
  • [5] Bruce P. G., 1997, Solid State Electrochemistry
  • [6] The Solvation Structure of Lithium Ions in an Ether Based Electrolyte Solution from First-Principles Molecular Dynamics
    Callsen, Martin
    Sodeyama, Keitaro
    Futera, Zdenek
    Tateyama, Yoshitaka
    Hamada, Ikutaro
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2017, 121 (01) : 180 - 188
  • [7] Aggregation of perchlorates in aprotic donor solvents .1. Lithium and sodium perchlorates
    Chabanel, M
    Legoff, D
    Touaj, K
    [J]. JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1996, 92 (21): : 4199 - 4205
  • [8] Promising Routes to a High Li+ Transference Number Electrolyte for Lithium Ion Batteries
    Diederichsen, Kyle M.
    McShane, Eric J.
    McCloskey, Bryan D.
    [J]. ACS ENERGY LETTERS, 2017, 2 (11): : 2563 - 2575
  • [9] Polymer-in-salt electrolytes based on acrylonitrile/butyl acrylate copolymers and lithium salts
    Florjanczyk, Z
    Zygadlo-Monikowska, E
    Wieczorek, W
    Ryszawy, A
    Tomaszewska, A
    Fredman, K
    Golodnitsky, D
    Peled, E
    Scrosati, B
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (39) : 14907 - 14914
  • [10] Forsyth M, 2000, J POLYM SCI POL PHYS, V38, P341, DOI 10.1002/(SICI)1099-0488(20000115)38:2<341::AID-POLB6>3.0.CO