Evaluation of precipitation datasets against local observations in southwestern Iran

被引:68
作者
Fallah, Ali [1 ,2 ,3 ]
Rakhshandehroo, Gholam Reza [1 ]
Berg, Peter [2 ]
Sungmin, O. [3 ]
Orth, Rene [3 ]
机构
[1] Shiraz Univ, Dept Civil & Environm Engn, Shiraz, Iran
[2] SMHI, Hydrol Res Unit, Norrkoping, Sweden
[3] Max Planck Inst Biogeochem, Jena, Germany
关键词
evaluation; interpolated dataset; Karun basin; precipitation datasets; reanalysis dataset; satellite rainfall estimate; DATA SETS; QUALITY-CONTROL; SATELLITE; RAINFALL; GAUGE; REANALYSIS; CLIMATE; SOIL; PRODUCTS; BASIN;
D O I
10.1002/joc.6445
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This study provides a comprehensive evaluation of a great variety of state-of-the-art precipitation datasets against gauge observations over the Karun basin in southwestern Iran. In particular, we consider (a) gauge-interpolated datasets (GPCCv8, CRU TS4.01, PREC/L, and CPC-Unified), (b) multi-source products (PERSIANN-CDR, CHIRPS2.0, MSWEP V2, HydroGFD2.0, and SM2RAIN-CCI), and (c) reanalyses (ERA-Interim, ERA5, CFSR, and JRA-55). The spatiotemporal performance of each product is evaluated against monthly precipitation observations from 155 gauges distributed across the basin during the period 2000-2015. This way, we find that overall the GPCCv8 dataset agrees best with the measurements. Most datasets show significant underestimations, which are largest for the interpolated datasets. These underestimations are usually smallest at low altitudes and increase towards more mountainous areas, although there is large spread across the products. Interestingly, no overall performance difference can be found between precipitation datasets for which gauge observations from Karun basin were used, versus products that were derived without these measurements, except in the case of GPCCv8. In general, our findings highlight remarkable differences between state-of-the-art precipitation products over regions with comparatively sparse gauge density, such as Iran. Revealing the best-performing datasets and their remaining weaknesses, we provide guidance for monitoring and modelling applications which rely on high-quality precipitation input.
引用
收藏
页码:4102 / 4116
页数:15
相关论文
共 71 条
[1]  
Adler RF, 2003, J HYDROMETEOROL, V4, P1147, DOI 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO
[2]  
2
[3]   Remote sensing of drought: Progress, challenges and opportunities [J].
AghaKouchak, A. ;
Farahmand, A. ;
Melton, F. S. ;
Teixeira, J. ;
Anderson, M. C. ;
Wardlow, B. D. ;
Hain, C. R. .
REVIEWS OF GEOPHYSICS, 2015, 53 (02) :452-480
[4]   Evaluation of remotely sensed precipitation estimates using PERSIANN-CDR and MSWEP for spatio-temporal drought assessment over Iran [J].
Alijanian, Mohammadali ;
Rakhshandehroo, Gholam Reza ;
Mishra, Ashok ;
Dehghani, Maryam .
JOURNAL OF HYDROLOGY, 2019, 579
[5]   Evaluation of satellite rainfall climatology using CMORPH, PERSIANN-CDR, PERSIANN, TRMM, MSWEP over Iran [J].
Alijanian, Mohammadali ;
Rakhshandehroo, Gholam Reza ;
Mishra, Ashok K. ;
Dehghani, Maryam .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2017, 37 (14) :4896-4914
[6]  
Amante C., 2009, ETOPO1 1 ARC MINUTE, DOI DOI 10.7289/V5C8276M
[7]  
Arheimer B., 2019, HYDROL EARTH SYST SC, P1, DOI [10.5194/hess-2019-111, DOI 10.5194/HESS-2019-111]
[8]   PERSIANN-CDR Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies [J].
Ashouri, Hamed ;
Hsu, Kuo-Lin ;
Sorooshian, Soroosh ;
Braithwaite, Dan K. ;
Knapp, Kenneth R. ;
Cecil, L. Dewayne ;
Nelson, Brian R. ;
Prat, Olivier P. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2015, 96 (01) :69-+
[9]   Satellite and In Situ Observations for Advancing Global Earth Surface Modelling: A Review [J].
Balsamo, Gianpaolo ;
Agusti-Parareda, Anna ;
Albergel, Clement ;
Arduini, Gabriele ;
Beljaars, Anton ;
Bidlot, Jean ;
Bousserez, Nicolas ;
Boussetta, Souhail ;
Brown, Andy ;
Buizza, Roberto ;
Buontempo, Carlo ;
Chevallier, Frederic ;
Choulga, Margarita ;
Cloke, Hannah ;
Cronin, Meghan F. ;
Dahoui, Mohamed ;
De Rosnay, Patricia ;
Dirmeyer, Paul A. ;
Drusch, Matthias ;
Dutra, Emanuel ;
Ek, Michael B. ;
Gentine, Pierre ;
Hewitt, Helene ;
Keeley, Sarah P. E. ;
Kerr, Yann ;
Kumar, Sujay ;
Lupu, Cristina ;
Mahfouf, Jean-Francois ;
McNorton, Joe ;
Mecklenburg, Susanne ;
Mogensen, Kristian ;
Munoz-Sabater, Joaquin ;
Orth, Rene ;
Rabier, Florence ;
Reichle, Rolf ;
Ruston, Ben ;
Pappenberger, Florian ;
Sandu, Irina ;
Seneviratne, Sonia I. ;
Tietsche, Steffen ;
Trigo, Isabel F. ;
Uijlenhoet, Remko ;
Wedi, Nils ;
Woolway, R. Iestyn ;
Zeng, Xubin .
REMOTE SENSING, 2018, 10 (12)
[10]   Intercomparison of homogenization techniques for precipitation data [J].
Beaulieu, Claudie ;
Seidou, Ousmane ;
Ouarda, Taha B. M. J. ;
Zhang, Xuebin ;
Boulet, Gilles ;
Yagouti, Abderrahmane .
WATER RESOURCES RESEARCH, 2008, 44 (02)