Cas9-Based Genome Editing in Drosophila

被引:23
|
作者
Housden, Benjamin E. [1 ]
Lin, Shuailiang [1 ]
Perrimon, Norbert [1 ,2 ]
机构
[1] Harvard Med Sch, Dept Genet, Boston, MA 02115 USA
[2] Harvard Med Sch, Howard Hughes Med Inst, Boston, MA USA
来源
USE OF CRISPR/CAS9, ZFNS, AND TALENS IN GENERATING SITE-SPECIFIC GENOME ALTERATIONS | 2014年 / 546卷
关键词
HOMOLOGOUS RECOMBINATION; KNOCK-IN; CAS9; CRISPR/CAS9; MUTAGENESIS; SPECIFICITY; NUCLEASES; CLEAVAGE; REPAIR;
D O I
10.1016/B978-0-12-801185-0.00019-2
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Our ability to modify the Drosophila genome has recently been revolutionized by the development of the CRISPR system. The simplicity and high efficiency of this system allows its widespread use for many different applications, greatly increasing the range of genome modification experiments that can be performed. Here, we first discuss some general design principles for genome engineering experiments in Drosophila and then present detailed protocols for the production of CRISPR reagents and screening strategies to detect successful genome modification events in both tissue culture cells and animals.
引用
收藏
页码:415 / 439
页数:25
相关论文
共 50 条
  • [1] Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish
    Albadri, Shahad
    Del Bene, Filippo
    Revenu, Celine
    METHODS, 2017, 121 : 77 - 85
  • [2] Cas9-Based Genome Editing in Xenopus tropicalis
    Nakayama, Takuya
    Blitz, Ira L.
    Fish, Margaret B.
    Odeleye, Akinleye O.
    Manohar, Sumanth
    Cho, Ken W. Y.
    Grainger, Robert M.
    USE OF CRISPR/CAS9, ZFNS, AND TALENS IN GENERATING SITE-SPECIFIC GENOME ALTERATIONS, 2014, 546 : 355 - 375
  • [3] Cas9-Based Genome Editing in Zebrafish
    Gonzales, Andrew P. W.
    Yeh, Jing-Ruey Joanna
    USE OF CRISPR/CAS9, ZFNS, AND TALENS IN GENERATING SITE-SPECIFIC GENOME ALTERATIONS, 2014, 546 : 377 - 413
  • [4] Guide RNA modification as a way to improve CRISPR/Cas9-based genome-editing systems
    Filippova, Julia
    Matveeva, Anastasiya
    Zhuravlev, Evgenii
    Stepanov, Grigory
    BIOCHIMIE, 2019, 167 : 49 - 60
  • [5] CRISPR/Cas9-based genome editing in the era of CAR T cell immunotherapy
    Salas-Mckee, January
    Kong, Weimin
    Gladney, Whitney L.
    Jadlowsky, Julie K.
    Plesa, Gabriela
    Davis, Megan M.
    Fraietta, Joseph A.
    HUMAN VACCINES & IMMUNOTHERAPEUTICS, 2019, 15 (05) : 1126 - 1132
  • [6] Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering
    Wada, Naoki
    Ueta, Risa
    Osakabe, Yuriko
    Osakabe, Keishi
    BMC PLANT BIOLOGY, 2020, 20 (01)
  • [7] CRISPR/Cas9-based genome editing of the filamentous fungi: the state of the art
    Shi, Tian-Qiong
    Liu, Guan-Nan
    Ji, Rong-Yu
    Shi, Kun
    Song, Ping
    Ren, Lu-Jing
    Huang, He
    Ji, Xiao-Jun
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2017, 101 (20) : 7435 - 7443
  • [8] A CRISPR/Cas9-based genome editing system for Rhodococcus ruber TH
    Liang, Youxiang
    Jiao, Song
    Wang, Miaomiao
    Yu, Huimin
    Shen, Zhongyao
    METABOLIC ENGINEERING, 2020, 57 : 13 - 22
  • [9] CRISPR/Cas9-Based Genome Editing in Mice by Single Plasmid Injection
    Fujihara, Yoshitaka
    Ikawa, Masahito
    USE OF CRISPR/CAS9, ZFNS, AND TALENS IN GENERATING SITE-SPECIFIC GENOME ALTERATIONS, 2014, 546 : 319 - 336
  • [10] Cas9-Based Tools for Targeted Genome Editing and Transcriptional Control
    Xu, Tao
    Li, Yongchao
    Van Nostrand, Joy D.
    He, Zhili
    Zhou, Jizhong
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2014, 80 (05) : 1544 - 1552