FoXS, FoXSDock and MultiFoXS: Single-state and multi-state structural modeling of proteins and their complexes based on SAXS profiles

被引:373
作者
Schneidman-Duhovny, Dina [1 ,2 ]
Hammel, Michal [3 ]
Tainer, John A. [3 ,4 ]
Sali, Andrej [1 ,2 ]
机构
[1] Univ Calif San Francisco, Dept Pharmaceut Chem, Dept Bioengn & Therapeut Sci, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Calif Inst Quantitat Biosci QB3, San Francisco, CA 94143 USA
[3] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging, Berkeley, CA 94720 USA
[4] Univ Texas MD Anderson Canc Ctr, Dept Mol & Cellular Oncol, Houston, TX 77030 USA
基金
美国能源部; 美国国家卫生研究院;
关键词
X-RAY-SCATTERING; DNA-REPAIR ENZYME; BIOLOGICAL MACROMOLECULES; COMPUTATION; RESOLUTION; DOCKING; CONFORMATIONS; SERVER;
D O I
10.1093/nar/gkw389
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Small Angle X-ray Scattering (SAXS) is an increasingly common and useful technique for structural characterization of molecules in solution. A SAXS experiment determines the scattering intensity of a molecule as a function of spatial frequency, termed SAXS profile. Here, we describe three web servers for modeling atomic structures based on SAXS profiles. FoXS (Fast X-Ray Scattering) rapidly computes a SAXS profile of a given atomistic model and fits it to an experimental profile. FoXSDock docks two rigid protein structures based on a SAXS profile of their complex. MultiFoXS computes a population-weighted ensemble starting from a single input structure by fitting to a SAXS profile of the protein in solution. We describe the interfaces and capabilities of the servers (salilab.org/foxs), followed by demonstrating their application on Interleukin-33 (IL-33) and its primary receptor ST2.
引用
收藏
页码:W424 / W429
页数:6
相关论文
共 37 条
[1]   Using motion planning to study protein folding pathways [J].
Amato, NM ;
Song, G .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2002, 9 (02) :149-168
[2]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[3]   Mechanism of DNA substrate recognition by the mammalian DNA repair enzyme, Polynucleotide Kinase [J].
Bernstein, N. K. ;
Hammel, M. ;
Mani, R. S. ;
Weinfeld, M. ;
Pelikan, M. ;
Tainer, J. A. ;
Glover, J. N. M. .
NUCLEIC ACIDS RESEARCH, 2009, 37 (18) :6161-6173
[4]   The molecular architecture of the mammalian DNA repair enzyme, polynucleotide kinase [J].
Bernstein, NK ;
Williams, RS ;
Rakovszky, ML ;
Cui, D ;
Green, R ;
Karimi-Busheri, F ;
Mani, RS ;
Galicia, S ;
Koch, CA ;
Cass, CE ;
Durocher, D ;
Weinfeld, M ;
Glover, JNM .
MOLECULAR CELL, 2005, 17 (05) :657-670
[5]   Low-resolution structures of proteins in solution retrieved from X-ray scattering with a genetic algorithm [J].
Chacón, P ;
Morán, F ;
Díaz, JF ;
Pantos, E ;
Andreu, JM .
BIOPHYSICAL JOURNAL, 1998, 74 (06) :2760-2775
[6]   A path planning approach for computing large-amplitude motions of flexible molecules [J].
Cortés, J ;
Siméon, T ;
de Angulo, VR ;
Guieysse, AD ;
Remaud-Siméon, M ;
Tran, V .
BIOINFORMATICS, 2005, 21 :I116-I125
[7]  
Debye P, 1915, ANN PHYS-BERLIN, V46, P809
[8]   Optimized atomic statistical potentials: assessment of protein interfaces and loops [J].
Dong, Guang Qiang ;
Fan, Hao ;
Schneidman-Duhovny, Dina ;
Webb, Ben ;
Sali, Andrej .
BIOINFORMATICS, 2013, 29 (24) :3158-3166
[9]  
Duhovny D, 2002, LECT NOTES COMPUT SC, V2452, P185
[10]  
Dyer KN, 2014, METHODS MOL BIOL, V1091, P245, DOI 10.1007/978-1-62703-691-7_18