Refinements of mean-square stochastic integral inequalities on convex stochastic processes

被引:7
|
作者
Agahi, Hamzeh [1 ]
机构
[1] Babol Univ Technol, Fac Basic Sci, Dept Math, Babol Sar, Iran
关键词
Convex stochastic process; Hermite-Hadamard inequality; Integration of stochastic processes;
D O I
10.1007/s00010-015-0378-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, in the class of convex stochastic processes, Kotrys (Aequat Math 83:143-151, 2012; Aequat Math 86:91-98, 2013) proposed upper and lower bounds of mean-square stochastic integrals by using Hermite-Hadamard inequality. This paper shows that these bounds can be refined. Our results extend and refine the corresponding ones in the literature. Finally, an open problem for further investigations is given.
引用
收藏
页码:765 / 772
页数:8
相关论文
共 50 条
  • [1] Refinements of mean-square stochastic integral inequalities on convex stochastic processes
    Hamzeh Agahi
    Aequationes mathematicae, 2016, 90 : 765 - 772
  • [2] Comonotonic stochastic processes and generalized mean-square stochastic integral with applications
    Agahi, Hamzeh
    Yadollahzadeh, Milad
    AEQUATIONES MATHEMATICAE, 2017, 91 (01) : 153 - 159
  • [3] Comonotonic stochastic processes and generalized mean-square stochastic integral with applications
    Hamzeh Agahi
    Milad Yadollahzadeh
    Aequationes mathematicae, 2017, 91 : 153 - 159
  • [4] Mean-square integral and differential of fuzzy stochastic processes
    Feng, YH
    FUZZY SETS AND SYSTEMS, 1999, 102 (02) : 271 - 280
  • [6] Mean Square Integral Inequalities for Generalized Convex Stochastic Processes via Beta Function
    Yang, Putian
    Zhang, Shiqing
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [7] SOME INTEGRAL INEQUALITIES FOR CONVEX STOCHASTIC PROCESSES
    Sarikaya, M. Z.
    Yaldiz, H.
    Budak, H.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2016, 85 (01): : 155 - 164
  • [8] Riesz Fractional Integral Inequalities for Convex Stochastic Processes
    Chatibi, Youness
    El Kinani, El Hassan
    Ouhadan, Abdelaziz
    FILOMAT, 2022, 36 (14) : 4699 - 4707
  • [9] Mean-square contractivity of stochastic θ-methods
    D'Ambrosio, Raffaele
    Di Giovacchino, Stefano
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 96
  • [10] The Role of the Time-Arrow in Mean-Square Estimation of Stochastic Processes
    Chen, Yongxin
    Karlsson, Johan
    Georgiou, Tryphon T.
    IEEE CONTROL SYSTEMS LETTERS, 2018, 2 (01): : 85 - 90