HELMHOLTZ SOLITONS IN OPTICAL MATERIALS WITH A DUAL POWER-LAW REFRACTIVE INDEX

被引:13
作者
Christian, J. M. [1 ]
McDonald, G. S. [1 ]
Chamorro-Posada, P. [2 ]
机构
[1] Univ Salford, Joule Phys Lab, Sch Comp Sci & Engn, Mat & Phys Res Ctr, Salford M5 4WT, Lancs, England
[2] Univ Valladolid, Dept Teoria Senal & Comunicac & Ingn Telemat, E-47011 Valladolid, Spain
关键词
Spatial solitons; Helmholtz diffraction; dual power-law materials; NONLINEAR SCHRODINGER-EQUATION; LIGHT-BEAM PROPAGATION; SPATIAL SOLITONS; KERR MEDIA; DARK SOLITONS; INTERFACES; BRIGHT; NONPARAXIALITY; PARTICLE; WAVES;
D O I
10.1142/S0218863510005340
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A nonlinear Helmholtz equation is proposed for modelling scalar optical beams in uniform planar waveguides whose refractive index exhibits a purely-focusing dual power-law dependence on the electric field amplitude. Two families of exact analytical solitons, describing forward-and backward-propagating beams, are derived. These solutions are physically and mathematically distinct from those recently discovered for related nonlinearities. The geometry of the new solitons is examined, conservation laws are reported, and classic paraxial predictions are recovered in a simultaneous multiple limit. Conventional semi-analytical techniques assist in studying the stability of these nonparaxial solitons, whose propagation properties are investigated through extensive simulations.
引用
收藏
页码:389 / 405
页数:17
相关论文
共 43 条
[1]   THEORY OF LIGHT-BEAM PROPAGATION AT NONLINEAR INTERFACES .2. MULTIPLE-PARTICLE AND MULTIPLE-INTERFACE EXTENSIONS [J].
ACEVES, AB ;
MOLONEY, JV ;
NEWELL, AC .
PHYSICAL REVIEW A, 1989, 39 (04) :1828-1840
[2]   THEORY OF LIGHT-BEAM PROPAGATION AT NONLINEAR INTERFACES .1. EQUIVALENT-PARTICLE THEORY FOR A SINGLE INTERFACE [J].
ACEVES, AB ;
MOLONEY, JV ;
NEWELL, AC .
PHYSICAL REVIEW A, 1989, 39 (04) :1809-1827
[3]   Hamiltonian-versus-energy diagrams in soliton theory [J].
Akhmediev, N ;
Ankiewicz, A ;
Grimshaw, R .
PHYSICAL REVIEW E, 1999, 59 (05) :6088-6096
[4]  
[Anonymous], 2002, Classical Mechanics
[5]   Quasi-stationary optical solitons with dual-power law nonlinearity [J].
Biswas, A .
OPTICS COMMUNICATIONS, 2004, 235 (1-3) :183-194
[6]   Spatial Kerr soliton collisions at arbitrary angles [J].
Chamorro-Posada, P. ;
McDonald, G. S. .
PHYSICAL REVIEW E, 2006, 74 (03)
[7]   Exact soliton solutions of the nonlinear Helmholtz equation: communication [J].
Chamorro-Posada, P ;
McDonald, GS ;
New, GHC .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2002, 19 (05) :1216-1217
[8]  
Chamorro-Posada P, 2008, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE DAYS ON DIFFRACTION 2008, P28
[9]   Non-paraxial beam propagation methods [J].
Chamorro-Posada, P ;
McDonald, GS ;
New, GHC .
OPTICS COMMUNICATIONS, 2001, 192 (1-2) :1-12
[10]   Propagation properties of non-paraxial spatial solitons [J].
Chamorro-Posada, P. ;
McDonald, G.S. ;
New, G.H.C. .
Journal of Modern Optics, 2000, 47 (11 SPEC.) :1877-1886