Singularities of monotone vector fields and an extragradient-type algorithm

被引:111
作者
Ferreira, OP [1 ]
Pérez, LRL
Németh, SZ
机构
[1] Univ Fed Goias, IME, BR-74001970 Goiania, Go, Brazil
[2] Hungarian Acad Sci, Inst Comp & Automat, H-1051 Budapest, Hungary
基金
新加坡国家研究基金会;
关键词
extragradient algorithm; global optimization; Hadamard manifold; monotone vector field;
D O I
10.1007/s10898-003-3780-y
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Bearing in mind the notion of monotone vector field on Riemannian manifolds, see [12-16], we study the set of their singularities and for a particularclass of manifolds develop an extragradient-type algorithm convergent to singularities of such vector fields. In particular, our method can be used forsolving nonlinear constrained optimization problems in Euclidean space, with a convex objective function and the constraint set a constant curvature Hadamard manifold. Our paper shows how tools of convex analysis on Riemannian manifolds can be used to solve some nonconvex constrained problem in a Euclidean space.
引用
收藏
页码:133 / 151
页数:19
相关论文
共 28 条
[1]   MANIFOLDS OF NEGATIVE CURVATURE [J].
BISHOP, RL ;
ONEILL, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 145 :1-&
[2]  
Burachik RS, 1999, LECT NOTES ECON MATH, V477, P49
[3]  
Cruz Neto JX., 1998, Balkan J. Geom. Appl, V3, P89
[4]  
doCarmo M. P., 1976, Differential geometry of curves and surfaces
[5]   Subgradient algorithm on Riemannian manifolds [J].
Ferreira, OP ;
Oliveira, PR .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 97 (01) :93-104
[6]   MINIMIZING A DIFFERENTIABLE FUNCTION OVER A DIFFERENTIAL MANIFOLD [J].
GABAY, D .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1982, 37 (02) :177-217
[7]  
Iusem A. N., 2000, Optimization, V48, P309
[8]  
IUSEM AN, 1994, COMPUT APPL MATH, V13, P103
[9]  
Iusem AN., 1997, Optimization, V42, P309, DOI [10.1080/02331939708844365, DOI 10.1080/02331939708844365]
[10]  
Korpelevich GM, 1976, Ekon. Matem. Metody., V12, P747