GLOBAL EXISTENCE AND BLOW-UP OF SOLUTIONS FOR GENERALIZED POCHHAMMER-CHREE EQUATIONS

被引:0
作者
Xu Runzhang [1 ]
Liu Yacheng [1 ]
机构
[1] Harbin Engn Univ, Coll Sci, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Pochhammer-Chree equations; initial boundary value problem; W-k; W-p solution; global existence; blow-up; NONEXISTENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study the initial boundary value problem of generalized Pochhammer-Chree equation u(tt) - u(xx) - u(xxt) - u(xxtt) = f(u)(xx), x is an element of Omega , t > 0, u(x, 0) = u(0)(x), u(t)(x, 0) = u(1)(x), x is an element of Omega, u(0, t) = u(1, t) = 0, t >= 0, where Omega = (0,1). First, we obtain the existence of local W-k,W-p solutions. Then, we prove that, if f(s) is an element of Ck+1(R) is nondecreasing, f(0) = 0 and vertical bar f(u)vertical bar <= C-1 vertical bar u vertical bar integral(u)(0) f(s)ds + C-2,C- U-0(x), u(1)(x) is an element of W-k,W-p(Omega) boolean AND W-0(1,p)(Omega), k >= 1, 1 < p <= infinity, then for any T > 0 the problem adrnits a unique solution u(x, t) is an element of W-2,W-infinity(0,T;W-k,W-p(Omega) boolean AND W-0(1,p)(Omega)). Finally, the finite time blow-up of solutions and global W-k,W-p solution of generalized IMBq equations are discussed.
引用
收藏
页码:1793 / 1807
页数:15
相关论文
共 19 条
[11]  
Liu Y, 1996, INDIANA U MATH J, V45, P797
[12]  
NAEMARK MA, 1954, LINEAR DIFFERENTIAL
[13]  
Rodrigues JF, 1987, OBSTACLE PROBLEMS MA
[14]  
Sachs R. L., 1990, Applicable Analysis, V36, P145, DOI 10.1080/00036819008839928
[15]   EXISTENCE OF SOLUTIONS FOR A FINITE NONLINEARLY HYPERELASTIC ROD [J].
SAXTON, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1985, 105 (01) :59-75
[16]   UNIQUENESS AND STABILITY FOR CONDUCTION-DIFFUSION SOLUTION TO BOUSSINESQ EQUATIONS BACKWARD IN TIME [J].
STRAUGHAN, B .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1976, 347 (1650) :435-446
[17]  
Straughan B., 1992, Journal of Mathematical and Physical Sciences, V26, P155
[18]  
Zhang WG, 1999, APPL MATH MECH-ENGL, V20, P666
[19]  
杨志坚, 1996, [数学物理学报. A辑, Acta Mathematica Scientia], V16, P31