GLOBAL EXISTENCE AND BLOW-UP OF SOLUTIONS FOR GENERALIZED POCHHAMMER-CHREE EQUATIONS

被引:0
作者
Xu Runzhang [1 ]
Liu Yacheng [1 ]
机构
[1] Harbin Engn Univ, Coll Sci, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Pochhammer-Chree equations; initial boundary value problem; W-k; W-p solution; global existence; blow-up; NONEXISTENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study the initial boundary value problem of generalized Pochhammer-Chree equation u(tt) - u(xx) - u(xxt) - u(xxtt) = f(u)(xx), x is an element of Omega , t > 0, u(x, 0) = u(0)(x), u(t)(x, 0) = u(1)(x), x is an element of Omega, u(0, t) = u(1, t) = 0, t >= 0, where Omega = (0,1). First, we obtain the existence of local W-k,W-p solutions. Then, we prove that, if f(s) is an element of Ck+1(R) is nondecreasing, f(0) = 0 and vertical bar f(u)vertical bar <= C-1 vertical bar u vertical bar integral(u)(0) f(s)ds + C-2,C- U-0(x), u(1)(x) is an element of W-k,W-p(Omega) boolean AND W-0(1,p)(Omega), k >= 1, 1 < p <= infinity, then for any T > 0 the problem adrnits a unique solution u(x, t) is an element of W-2,W-infinity(0,T;W-k,W-p(Omega) boolean AND W-0(1,p)(Omega)). Finally, the finite time blow-up of solutions and global W-k,W-p solution of generalized IMBq equations are discussed.
引用
收藏
页码:1793 / 1807
页数:15
相关论文
共 19 条
[1]  
Angulo J, 1999, COMPUT APPL MATH, V18, P333
[3]   SOME EXAMPLES OF INELASTIC SOLITON INTERACTION [J].
BOGOLUBSKY, IL .
COMPUTER PHYSICS COMMUNICATIONS, 1977, 13 (03) :149-155
[4]   Local existence and blow-up criterion for the Boussinesq equations [J].
Chae, D ;
Nam, HS .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1997, 127 :935-946
[5]  
Chen GW, 1999, NONLINEAR ANAL-THEOR, V36, P961
[6]  
CLARKSON PA, 1986, STUD APPL MATH, V75, P95
[7]  
KOCEV I, 1956, MAT SBORNIK, V38, P360
[8]   A NOTE ON THE NON-EXISTENCE OF GLOBAL-SOLUTIONS OF INITIAL BOUNDARY-VALUE PROBLEMS FOR THE BOUSSINESQ EQUATION UTT=3UXXXX+UXX-12(U2)XX [J].
LEVINE, HA ;
SLEEMAN, BD .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1985, 107 (01) :206-210
[9]   Bifurcations of traveling wave solutions in generalized Pochhammer-Chree equation [J].
Li, JB ;
Zhang, LJ .
CHAOS SOLITONS & FRACTALS, 2002, 14 (04) :581-593
[10]   Smooth and non-smooth traveling waves in a nonlinearly dispersive equation [J].
Li, JB ;
Liu, ZR .
APPLIED MATHEMATICAL MODELLING, 2000, 25 (01) :41-56