EXISTENCE OF WEAK SOLUTIONS TO THE STEADY TWO-PHASE FLOW

被引:4
作者
Chen, Senming [1 ]
Zhu, Changjiang [1 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510641, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
two-phase model; weak solutions; non-uniqueness; NAVIER-STOKES EQUATIONS; MODEL;
D O I
10.4310/CMS.2019.v17.n6.a9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the existence of weak solutions to the steady two-phase flow. The result holds in three dimensions on the condition that the adiabatic constants 7,0> 1 and y>;, 9=1. By constructing a special example, we show that the weak solutions are non-unique. It turns out that the uniform approximation scheme restricts the type of weak solutions, which leads to some open problems.
引用
收藏
页码:1699 / 1712
页数:14
相关论文
共 21 条
[1]  
[Anonymous], ARXIV181105833
[2]  
[Anonymous], OXFORD LECT SERIES M
[3]  
[Anonymous], ARXIV180200798
[4]   Global Weak Solutions to a Generic Two-Fluid Model [J].
Bresch, D. ;
Desjardins, B. ;
Ghidaglia, J. -M. ;
Grenier, E. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 196 (02) :599-629
[5]   Finite-Energy Solutions for Compressible Two-Fluid Stokes System [J].
Bresch, Didier ;
Mucha, Piotr B. ;
Zatorska, Ewelina .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 232 (02) :987-1029
[6]  
Brezina J, 2008, COMMENT MATH UNIV CA, V49, P611
[7]  
Evans L.C., 2010, Partial Differential Equations, V19, pxxii+749
[8]   On the Existence of Globally Defined Weak Solutions to the Navier-Stokes Equations [J].
Feireisl, Eduard ;
Novotny, Antonin ;
Petzeltova, Hana .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2001, 3 (04) :358-392
[9]   Lp-estimates for the Navier-Stokes equations for steady compressible flow [J].
Frehse, J ;
Goj, S ;
Steinhauer, M .
MANUSCRIPTA MATHEMATICA, 2005, 116 (03) :265-275
[10]   The Dirichlet problem for steady viscous compressible flow in three dimensions [J].
Frehse, J. ;
Steinhauer, M. ;
Weigant, W. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 97 (02) :85-97