On the short time asymptotic of the stochastic Allen-Cahn equation

被引:13
作者
Weber, Hendrik [1 ]
机构
[1] Univ Bonn, Inst Appl Math, D-53115 Bonn, Germany
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2010年 / 46卷 / 04期
关键词
Stochastic reaction-diffusion equation; Sharp interface limit; Randomly perturbed boundary motion; MEAN-CURVATURE; LEVEL SETS; MOTION; INTERFACES; LIMIT; FLOW;
D O I
10.1214/09-AIHP333
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A description of the short time behavior of solutions of the Allen-Cahn equation with a smoothened additive noise is presented. The key result is that in the sharp interface limit solutions move according to motion by mean curvature with an additional stochastic forcing. This extends a similar result of Funaki [Acta Math. Sin (Engl. Ser) 15 (1999) 407-438] in spatial dimension n = 2 to arbitrary dimensions.
引用
收藏
页码:965 / 975
页数:11
相关论文
共 15 条
[1]   MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING [J].
ALLEN, SM ;
CAHN, JW .
ACTA METALLURGICA, 1979, 27 (06) :1085-1095
[2]  
[Anonymous], 1991, BROWNIAN MOTION STOC
[3]   Asymptotic behavior of solutions of an Allen-Cahn equation with a nonlocal term [J].
Chen, XF ;
Hilhorst, D ;
Logak, E .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (07) :1283-1298
[4]  
CHEN YG, 1991, J DIFFER GEOM, V33, P749
[5]  
DEMOTTONI P, 1995, T AM MATH SOC, V347, P1533
[6]   A stochastic selection principle in case of fattening for curvature flow [J].
Dirr, N ;
Luckhaus, S ;
Novaga, M .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2001, 13 (04) :405-425
[7]   MOTION OF LEVEL SETS BY MEAN-CURVATURE .2. [J].
EVANS, LC ;
SPRUCK, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 330 (01) :321-332
[8]   PHASE-TRANSITIONS AND GENERALIZED MOTION BY MEAN-CURVATURE [J].
EVANS, LC ;
SONER, HM ;
SOUGANIDIS, PE .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (09) :1097-1123
[9]   MOTION OF LEVEL SETS BY MEAN-CURVATURE .1. [J].
EVANS, LC ;
SPRUCK, J .
JOURNAL OF DIFFERENTIAL GEOMETRY, 1991, 33 (03) :635-681
[10]   Singular limit for stochastic reaction-diffusion equation and generation of random interfaces [J].
Funaki, T .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 1999, 15 (03) :407-438