Infinitely many solutions for ordinary p-Laplacian systems

被引:3
作者
Jebelean, Petru [1 ]
机构
[1] W Univ Timisoara, Dept Math, Timisoara 300223, Romania
关键词
ordinary p-Laplacian system; critical point; Palais-Smale condition;
D O I
10.3934/cpaa.2008.7.267
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the existence of infinitely many solutions for the boundary value problem {-(vertical bar u'vertical bar(p-2)u')' + epsilon vertical bar u vertical bar(p-2)u = del F (t, u), in (0, T), ((vertical bar u'vertical bar(p-2)u')(0), -(vertical bar u'vertical bar(p-2)u')(T)) is an element of partial derivative j (u(0), u(T)), where epsilon >= 0, p is an element of (1, infinity) are fixed, the convex function j : R-N x R-N -> (-infinity + infinity] is proper, even, lower semicontinuous and F : (0, T) x R-N -> R is a Caratheodory mapping, continuously differentiable and even with respect to the second variable.
引用
收藏
页码:267 / 275
页数:9
相关论文
共 12 条
  • [1] Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
  • [2] [Anonymous], 1986, MINIMAX METHODS CRIT
  • [3] Mountain pass solutions to equations of p-Laplacian type
    De Nápoli, P
    Mariani, MC
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (07) : 1205 - 1219
  • [4] Dinca G., 2001, PORT MATH, V58, P339
  • [5] Nonlinear second-order multivalued boundary value problems
    Gasinski, L
    Papageorgiou, NS
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2003, 113 (03): : 293 - 319
  • [6] Hokkanen V.-M., 2002, Functional Methods in Differential Equations
  • [7] Ordinary p-Laplacian systems with nonlinear boundary conditions
    Jebelean, P
    Morosanu, G
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 313 (02) : 738 - 753
  • [8] JEBELEAN P, IN PRESS INFINITELY
  • [9] Jebelean P., 2005, Nonlinear Funct. Anal. Appl., V10, P591
  • [10] Rockafellar R. T., 1970, Convex Analysis