Sufficient Conditions for the Global Rigidity of Periodic Graphs

被引:0
|
作者
Kaszanitzky, Viktoria E. [1 ,2 ]
Kiraly, Csaba [2 ,3 ]
Schulze, Bernd [4 ]
机构
[1] Budapest Univ Technol & Econ, Magyar Tudosok Krt 2, H-1117 Budapest, Hungary
[2] Eotvos Lorand Res Network ELKH, MTA ELTE Egervary Res Grp Combinatorial Optimizat, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
[3] Eotvos Lorand Univ, Dept Operat Res, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
[4] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YF, England
基金
英国工程与自然科学研究理事会; 匈牙利科学研究基金会;
关键词
Rigidity; Global rigidity; Body-bar framework; Periodic framework; REALIZATIONS; FRAMEWORKS; MATROIDS; BODIES;
D O I
10.1007/s00454-021-00346-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Tanigawa (2016) showed that vertex-redundant rigidity of a graph implies its global rigidity in arbitrary dimension. We extend this result to periodic frameworks under fixed lattice representations. That is, we show that if a generic periodic framework is vertex-redundantly rigid, in the sense that the deletion of a single vertex orbit under the periodicity results in a periodically rigid framework, then it is also periodically globally rigid. Our proof is similar to the one of Tanigawa, but there are some added difficulties. First, it is not known whether periodic global rigidity is a generic property in dimension d > 2. We work around this issue by using slight modifications of recent results of Kaszanitzky et al. (2021). Secondly, while the rigidity of finite frameworks in R-d on at most d vertices obviously implies their global rigidity, it is non-trivial to prove a similar result for periodic frameworks. This is accomplished by extending a result of Bezdek and Connelly (2002) on the existence of a continuous motion between two equivalent d-dimensional realisations of a single graph in R-2d to periodic frameworks. As an application of our result, we give a necessary and sufficient condition for the global rigidity of generic periodic body-bar frameworks in arbitrary dimension. This provides a periodic counterpart to a result of Connelly et al. (2013) regarding the global rigidity of generic finite body-bar frameworks.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [1] Sufficient Conditions for the Global Rigidity of Periodic Graphs
    Viktória E. Kaszanitzky
    Csaba Király
    Bernd Schulze
    Discrete & Computational Geometry, 2022, 67 : 1 - 16
  • [2] Sufficient conditions for the global rigidity of graphs
    Tanigawa, Shin-ichi
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2015, 113 : 123 - 140
  • [3] Global rigidity of periodic graphs under fixed-lattice representations
    Kaszanitzky, Viktoria E.
    Schulze, Bernd
    Tanigawa, Shin-ichi
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2021, 146 : 176 - 218
  • [4] SUFFICIENT CONDITIONS FOR 2-DIMENSIONAL GLOBAL RIGIDITY
    Gu, Xiaofeng
    Meng, Wei
    Rolek, Martin
    Wang, Yue
    Yu, Gexin
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (04) : 2520 - 2534
  • [5] GLOBAL RIGIDITY OF UNIT BALL GRAPHS
    Garamvolgyi, Daniel
    Jordan, Tibor
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (01) : 212 - 229
  • [6] On the global rigidity of tensegrity graphs
    Garamvolgyi, Daniel
    DISCRETE APPLIED MATHEMATICS, 2021, 302 : 114 - 122
  • [7] Necessary Conditions for the Generic Global Rigidity of Frameworks on Surfaces
    Jackson, B.
    McCourt, T. A.
    Nixon, A.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2014, 52 (02) : 344 - 360
  • [8] Necessary Conditions for the Global Rigidity of Direction-Length Frameworks
    Jackson, Bill
    Keevash, Peter
    DISCRETE & COMPUTATIONAL GEOMETRY, 2011, 46 (01) : 72 - 85
  • [9] Global rigidity of generic frameworks on the cylinder
    Jackson, Bill
    Nixon, Anthony
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 139 : 193 - 229
  • [10] Rigidity in finite-element matrices: Sufficient conditions for the rigidity of structures and substructures
    Shklarski, Gil
    Toledo, Sivan
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (01) : 7 - 40