A hybrid deep learning-based online energy management scheme for industrial microgrid

被引:30
|
作者
Lu, Renzhi [1 ,2 ]
Bai, Ruichang [1 ]
Ding, Yuemin [3 ]
Wei, Min [2 ,4 ]
Jiang, Junhui [5 ]
Sun, Mingyang [6 ]
Xiao, Feng [7 ]
Zhang, Hai-Tao [1 ,8 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Image Proc & Intelligent Control, Wuhan 430074, Peoples R China
[2] Minist Educ, Key Lab Ind Internet Things & Networked Control, Chongqing 400065, Peoples R China
[3] Norwegian Univ Sci & Technol, Dept Energy & Proc Engn, N-7034 Trondheim, Norway
[4] Chongqing Univ Posts & Telecommun, Coll Automat, Chongqing 400065, Peoples R China
[5] Hanyang Univ, Dept Elect Syst Engn, Ansan 15588, South Korea
[6] Zhejiang Univ, Dept Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
[7] North China Elect Power Univ, Sch Control & Comp Engn, State Key Lab Alternate Elect Power Syst Renewabl, Beijing 102206, Peoples R China
[8] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Online energy management; Demand response; Industrial microgrid; Deep learning; Convolutional neural network; Long short-term memory; DEMAND RESPONSE; FRAMEWORK; LOADS; PRICE; POWER; DISPATCH; MODEL;
D O I
10.1016/j.apenergy.2021.117857
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The fluctuations in electricity prices and intermittency of renewable energy systems necessitate the adoption of online energy management schemes in industrial microgrids. However, it is challenging to design effective and optimal online rolling horizon energy management strategies that can deliver assured optimality, subject to the uncertainties of volatile electricity prices and stochastic renewable resources. This paper presents an adaptable online energy management scheme for industrial microgrids that minimizes electricity costs while meeting production requirements by repeatedly solving an optimization problem over a moving control window, taking advantage of forecasted future prices and renewable energy profiles implemented by a hybrid deep learning model. The predicted values over the control horizon are assumed to be uncertain, and a multivariate Gaussian distribution is used to handle the variations in electricity prices and renewable resources around their predicted nominal values. Simulation results under different scenarios using real-world data verify the effectiveness of the proposed online energy management scheme, assessed by the corresponding gaps with respect to several selected benchmark strategies and the ideal boundaries of the best and worst known solutions. Furthermore, the robustness of the scheme is verified by considering severe errors in forecasted electricity prices and renewable profiles.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A novel deep learning-based forecasting model optimized by heuristic algorithm for energy management of microgrid
    Kim, H. J.
    Kim, M. K.
    APPLIED ENERGY, 2023, 332
  • [2] Online Microgrid Energy Management Based on Safe Deep Reinforcement Learning
    Li, Hepeng
    Wang, Zhenhua
    Li, Lusi
    He, Haibo
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [3] Deep Learning-Based Short-Term Load Forecasting for Supporting Demand Response Program in Hybrid Energy System
    Pramono, Sholeh Hadi
    Rohmatillah, Mahdin
    Maulana, Eka
    Hasanah, Rini Nur
    Hario, Fakhriy
    ENERGIES, 2019, 12 (17)
  • [4] A Novel Hybrid-Action-Based Deep Reinforcement Learning for Industrial Energy Management
    Lu, Renzhi
    Jiang, Zhenyu
    Yang, Tao
    Chen, Ying
    Wang, Dong
    Peng, Xin
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (10) : 12461 - 12475
  • [5] Deep Reinforcement Learning-Based Demand Response for Smart Facilities Energy Management
    Lu, Renzhi
    Bai, Ruichang
    Luo, Zhe
    Jiang, Junhui
    Sun, Mingyang
    Zhang, Hai-Tao
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (08) : 8554 - 8565
  • [6] A Deep Learning-Based Sepsis Estimation Scheme
    Al-Mualemi, Bilal Yaseen
    Lu, Lu
    IEEE ACCESS, 2021, 9 : 5442 - 5452
  • [7] Novel Architecture of Energy Management Systems Based on Deep Reinforcement Learning in Microgrid
    Lee, Seongwoo
    Seon, Joonho
    Sun, Young Ghyu
    Kim, Soo Hyun
    Kyeong, Chanuk
    Kim, Dong In
    Kim, Jin Young
    IEEE TRANSACTIONS ON SMART GRID, 2024, 15 (02) : 1646 - 1658
  • [8] Learning-based scheduling of industrial hybrid renewable energy systems
    Pravin, P. S.
    Luo, Zhiyao
    Li, Lanyu
    Wang, Xiaonan
    COMPUTERS & CHEMICAL ENGINEERING, 2022, 159
  • [9] Deep learning-based hybrid sentiment analysis with feature selection using optimization algorithm
    Daniel, D. Anand Joseph
    Meena, M. Janaki
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (28) : 43273 - 43296
  • [10] Deep reinforcement learning for energy management in a microgrid with flexible demand
    Nakabi, Taha Abdelhalim
    Toivanen, Pekka
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2021, 25