Invariant hyperkahler structures on the cotangent bundles of Hermitian symmetric spaces

被引:0
作者
Mykytyuk, IV [1 ]
机构
[1] Lviv Polytech Natl Univ, Inst Appl Math & Fundamental Sci, Lvov, Ukraine
关键词
D O I
10.1070/SM2003v194n08ABEH000763
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G/K be an irreducible Hermitian symmetric space of compact type with standard homogeneous complex structure. Then the real symplectic manifold (T*(G/K), Omega) has the natural complex structure J(-). All G-invariant Kahler structures (J, Omega) on G-invariant subdomains of T*(G/K) anticommuting with J(-) are constructed. Each hypercomplex structure of this kind, equipped with a suitable metric, defines a hyperkahler structure. As an application, a new proof of the theorem of Harish-Chandra and Moore for Hermitian symmetric spaces is obtained.
引用
收藏
页码:1225 / 1250
页数:26
相关论文
共 13 条