The path towards high-contrast imaging with the VLTI: the Hi-5 project

被引:33
|
作者
Defrere, D. [1 ]
Absil, O. [1 ]
Berger, J. -P. [2 ]
Boulet, T. [1 ]
Danchi, W. C. [3 ]
Ertel, S. [4 ]
Gallenne, A. [5 ]
Henault, F. [2 ]
Hinz, P. [4 ]
Huby, E. [6 ]
Ireland, M. [7 ]
Kraus, S. [8 ]
Labadie, L. [9 ]
Le Bouquin, J. -B. [2 ]
Martin, G. [2 ]
Matter, A. [10 ]
Merand, A. [11 ]
Mennesson, B. [12 ]
Minardi, S. [13 ,16 ]
Monnier, J. D. [14 ]
Norris, B. [15 ]
de Xivry, G. Orban [1 ]
Pedretti, E. [16 ]
Pott, J. -U. [17 ]
Reggiani, M. [1 ]
Serabyn, E.
Surdej, J. [1 ]
Tristram, K. R. W.
Woillez, J.
机构
[1] Univ Liege, Space Sci Technol & Astrophys Res STAR Inst, Liege, Belgium
[2] Univ Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France
[3] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Greenbelt, MD USA
[4] Univ Arizona, Steward Observ, Dept Astron, Tucson, AZ USA
[5] European Southern Observ, Alonso Cordova 3107, Vitacura, Santiago De Chi, Chile
[6] PSL Res Univ, Observ Paris, LESIA, F-92195 Meudon, France
[7] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia
[8] Univ Exeter, Sch Phys & Astron, Exeter, Devon, England
[9] Univ Cologne, Phys Inst 1, Zulpicher Str 77, D-50937 Cologne, Germany
[10] Univ Cote Azur, Observ Cote Azur, CNRS, Lab Lagrange, CS 34229, F-06304 Nice 4, France
[11] European Southern Observ, Munich, Germany
[12] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[13] Univ Jena, Jena, Germany
[14] Univ Michigan, Ann Arbor, MI 48109 USA
[15] Univ Sydney, Sydney, NSW, Australia
[16] Leibniz Inst Astrophys Potsdam AIP Germany, innoFSPEC, Potsdam, Germany
[17] Max Planck Inst Astron, Heidelberg, Germany
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Infrared interferometry; Integrated optics; VLTI; Hi-5; PFI; Exoplanet; Exozodiacal dust; AGN; ULTRAFAST LASER INSCRIPTION; BEAM COMBINER; WAVE-GUIDES; WATER-VAPOR; INTERFEROMETRY; ARCHITECTURE; COMBINATION; PERFORMANCE; PLANETS; LIMITS;
D O I
10.1007/s10686-018-9593-2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The development of high-contrast capabilities has long been recognized as one of the top priorities for the VLTI. As of today, the VLTI routinely achieves contrasts of a few 10(-3) in the near-infrared with PIONIER (H band) and GRAVITY (K band). Nulling interferometers in the northern hemisphere and non-redundant aperture masking experiments have, however, demonstrated that contrasts of at least a few 10(-4) are within reach using specific beam combination and data acquisition techniques. In this paper, we explore the possibility to reach similar or higher contrasts on the VLTI. After reviewing the state-of-the-art in high-contrast infrared interferometry, we discuss key features that made the success of other high-contrast interferometric instruments (e.g., integrated optics, nulling, closure phase, and statistical data reduction) and address possible avenues to improve the contrast of the VLTI by at least one order of magnitude. In particular, we discuss the possibility to use integrated optics, proven in the near-infrared, in the thermal near-infrared (L and M bands, 3-5 m), a sweet spot to image and characterize young extra-solar planetary systems. Finally, we address the science cases of a high-contrast VLTI imaging instrument and focus particularly on exoplanet science (young exoplanets, planet formation, and exozodiacal disks), stellar physics (fundamental parameters and multiplicity), and extragalactic astrophysics (active galactic nuclei and fundamental constants). Synergies and scientific preparation for other potential future instruments such as the Planet Formation Imager are also briefly discussed. This project is called Hi-5 for High-contrast Interferometry up to 5 m.
引用
收藏
页码:475 / 495
页数:21
相关论文
共 50 条
  • [11] Adaptive Optics for High-Contrast Imaging
    Kasper, Markus
    ADAPTIVE OPTICS SYSTEMS III, 2012, 8447
  • [12] Adaptive optics for high-contrast imaging
    Carbillet, M.
    ASTRONOMY WITH HIGH CONTRAST IMAGING III: INSTRUMENTAL TECHNIQUES, MODELING AND DATA PROCESSING, 2006, 22 : 121 - 138
  • [13] Matching pursuit for imaging high-contrast conductivity
    Borcea, L
    Berryman, JG
    Papanicolaou, GC
    INVERSE PROBLEMS, 1999, 15 (04) : 811 - 849
  • [14] High-contrast imaging results with the vortex coronagraph
    Serabyn, E.
    Trauger, J.
    Moody, D.
    Mawet, D.
    Liewer, K.
    Krist, J.
    Kern, B.
    TECHNIQUES AND INSTRUMENTATION FOR DETECTION OF EXOPLANETS VI, 2013, 8864
  • [15] High-Contrast Imaging: Hide and Seek with Exoplanets
    Claudi, Riccardo
    Mesa, Dino
    GALAXIES, 2025, 13 (01):
  • [16] High-contrast Hα imaging with Subaru/SCExAO
    Uyama, Taichi
    Norris, Barnaby
    Jovanovic, Nemanja
    Lozi, Julien
    Tuthill, Peter
    Guyon, Olivier
    Kudo, Tomoyuki
    Hashimoto, Jun
    Tamura, Motohide
    Martinache, Frantz
    JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS, 2020, 6 (04)
  • [17] New pupil masks for high-contrast imaging
    Vanderbei, RJ
    Kasdin, NJ
    Spergel, DN
    Kuchner, M
    TECHNIQUES AND INSTRUMENTATION FOR DETECTION OF EXOPLANETS, 2003, 5170 : 49 - 56
  • [18] High-contrast imaging science with Adaptive Optics
    Brandner, W
    Potter, D
    SCIENTIFIC DRIVERS FOR ESO FUTURE VLT/VLTI INSTRUMENTATION, PROCEEDINGS, 2002, : 264 - 266
  • [19] Monochromatic verification of high-contrast imaging with an occulter
    Sirbu, Dan
    Kasdin, N. Jeremy
    Vanderbei, Robert J.
    OPTICS EXPRESS, 2013, 21 (26): : 32234 - 32253
  • [20] High-contrast imaging in the Hyades with snapshot LOCI
    Morzinski, Katie M.
    Macintosh, Bruce A.
    Close, Laird M.
    Marois, Christian
    Konopacky, Quinn
    Patience, Jenny
    ADAPTIVE OPTICS SYSTEMS III, 2012, 8447