On the sizes of gaps in the Fourier expansion of modular forms

被引:17
作者
Alkan, E [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2005年 / 57卷 / 03期
关键词
D O I
10.4153/CJM-2005-019-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f = E ' 1 af (n)q' be a cusp form with integer weight k >= 2 that is not a linear ncombination of forms with complex multiplication. For n >= 1, let i (f)(n) = max{i : a(f)(n + j) = 0 for all 0 <= j <= i} if a(f)(n) = 0, otherwise. Concerning bounded values of i (f)(n) we prove that for epsilon > 0 there exists M = M(epsilon, f) such that #{n <= x : i(f) (n) <= M} >= (1-epsilon)x. Using results of Wu, we show that if f is a weight 2 cusp form for an elliptic curve without complex multiplication, then i (f)(n) << (f,c) n5314. Using a result of David and Pappalardi, we improve the exponent to (1)/(3) for almost all newforms associated to elliptic curves 3 without complex multiplication. Inspired by a classical paper of Selberg, we also investigate i (f)(n) on the average using well known bounds on the Riemann Zeta function.
引用
收藏
页码:449 / 470
页数:22
相关论文
共 18 条
[1]   Nonvanishing of Fourier coefficients of modular forms [J].
Alkan, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (06) :1673-1680
[2]   The Chebotarev density theorem in short intervals and some questions of Serre [J].
Balog, A ;
Ono, K .
JOURNAL OF NUMBER THEORY, 2001, 91 (02) :356-371
[3]  
David C, 1999, INT MATH RES NOTICES, V1999, P165
[5]  
ELKIES ND, 1992, ASTERISQUE, V198, P127
[6]  
Erdos P., 1967, Acta Arith., V2, P175
[7]  
FILASETA M, 1992, J LOND MATH SOC, V45, P215
[8]   EXPONENTIAL-SUMS WITH MONOMIALS [J].
FOUVRY, E ;
IWANIEC, H .
JOURNAL OF NUMBER THEORY, 1989, 33 (03) :311-333
[9]  
Granville A, 1998, INT MATH RES NOTICES, V1998, P991
[10]  
Iwaniec H., 1997, GRADUATE STUDIES MAT