Highly efficient propane dehydrogenation promoted by reverse water-gas shift reaction on Pt-Zn alloy surfaces

被引:24
作者
Rodaum, Chadatip [1 ]
Chaipornchalerm, Peeranat [1 ]
Nunthakitgoson, Watinee [1 ]
Thivasasith, Anawat [1 ]
Maihom, Thana [2 ]
Atithep, Thassanant [3 ]
Kidkhunthod, Pinit [4 ]
Uthayopas, Chayapat [5 ]
Nutanong, Sarana [5 ]
Thongratkaew, Sutarat [6 ]
Faungnawakij, Kajornsak [6 ]
Wattanakit, Chularat [1 ]
机构
[1] Vidyasirimedhi Inst Sci & Technol, Sch Energy Sci & Engn, Dept Chem & Biomol Engn, Rayong 21210, Thailand
[2] Kasetsart Univ, Fac Liberal Arts & Sci, Dept Chem, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
[3] Vidyasirimedhi Inst Sci & Technol, Frontier Res Ctr FRC, Rayong 21210, Thailand
[4] Synchrotron Light Res Inst, 111 Univ Ave, Muang Dist, Nakhon Ratchasi, Thailand
[5] Vidyasirimedhi Inst Sci & Technol, Sch Informat Sci & Technol, Rayong 21210, Thailand
[6] Natl Sci & Technol Dev Agcy NSTDA, Natl Nanotechnol Ctr NANOTEC, Khlong Luang 12120, Pathum Thani, Thailand
关键词
CO2; Propane dehydrogenation; PtZn alloy nanoparticles; RWGS; TOTAL-ENERGY CALCULATIONS; OXIDATIVE DEHYDROGENATION; CARBON-DIOXIDE; CATALYTIC PERFORMANCE; SILICALITE-1; ZEOLITE; MODIFIED ZSM-5; TEMPERATURE; CO2; MECHANISM; METHANOL;
D O I
10.1016/j.fuel.2022.124833
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
CO2-assisted propane dehydrogenation has been developed in propylene production technology to deal with thermodynamic equilibrium limitations. However, the rational design of catalysts is a crucial challenge in achieving high catalytic performances. Herein, we report the successful fabrication of highly dispersed PtZn alloy on hierarchical zeolites for CO2-assisted propane dehydrogenation through the reverse water-gas shift reaction (RWGS). Compared with monometallic Pt, the synergistic effect of PtZn plays a crucial role in both direct propane dehydrogenation and RWGS, resulting in an outstanding catalytic performance with a high turnover frequency (TOF) of 1.82 x 10(4) h(-1). From the catalytic point of view, Pt-Zn alloy surfaces facilitate the equilibrium shift in propane conversion by consuming produced H-2 through RWGS with weakening CO-metal surface interaction revealed by operando studies and DFT calculations. These findings illustrate the conceptual design of alloy catalysts and allow insights into the mechanistic details of CO2-assisted alkane dehydrogenation.
引用
收藏
页数:13
相关论文
共 52 条
[1]   Reverse water-gas shift reaction at the Cu/ZnO interface: Influence of the Cu/Zn ratio on structure-activity correlations [J].
Alvarez Galvan, Consuelo ;
Schumann, Julia ;
Behrens, Malte ;
Garcia Fierro, Jose Luis ;
Schloegl, Robert ;
Frei, Elias .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 195 :104-111
[2]   Oxidative dehydrogenation of propane to propylene with carbon dioxide [J].
Atanga, Marktus A. ;
Rezaei, Fateme ;
Jawad, Abbas ;
Fitch, Mark ;
Rownaghi, Ali A. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 220 :429-445
[3]   Unravelling the Role of Oxygen Vacancies in the Mechanism of the Reverse Water-Gas Shift Reaction by Operando DRIFTS and Ultraviolet-Visible Spectroscopy [J].
Bobadilla, Luis F. ;
Santos, Jose L. ;
Ivanova, Svetlana ;
Odriozola, Jose A. ;
Urakawa, Atsushi .
ACS CATALYSIS, 2018, 8 (08) :7455-7467
[4]   New insight into the enhanced catalytic performance of ZnPt/HZSM-5 catalysts for direct dehydrogenation of propane to propylene [J].
Chen, Chong ;
Sun, Minglei ;
Hu, Zhongpan ;
Ren, Jintao ;
Zhang, Shoumin ;
Yuan, Zhong-Yong .
CATALYSIS SCIENCE & TECHNOLOGY, 2019, 9 (08) :1979-1988
[5]   Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies [J].
Chen, Sai ;
Chang, Xin ;
Sun, Guodong ;
Zhang, Tingting ;
Xu, Yiyi ;
Wang, Yang ;
Pei, Chunlei ;
Gong, Jinlong .
CHEMICAL SOCIETY REVIEWS, 2021, 50 (05) :3315-3354
[6]   Catalytic behavior of metal catalysts in high-temperature RWGS reaction: In-situ FT-IR experiments and first-principles calculations [J].
Choi, Sungjun ;
Sang, Byoung-In ;
Hong, Jongsup ;
Yoon, Kyung Joong ;
Son, Ji-Won ;
Lee, Jong-Ho ;
Kim, Byung-Kook ;
Kim, Hyoungchul .
SCIENTIFIC REPORTS, 2017, 7
[7]  
Coates J., 2000, Encyclopedia of analytical chemistry, V12, P10815, DOI [10.1002/9780470027318.a5606, DOI 10.1002/9780470027318.A5606]
[8]   Catalytic dehydrogenation of propane by carbon dioxide: a medium-temperature thermochemical process for carbon dioxide utilisation [J].
Du, X. ;
Yao, B. ;
Gonzalez-Cortes, S. ;
Kuznetsov, V. L. ;
AlMegren, Hamid ;
Xiao, T. ;
Edwards, P. P. .
FARADAY DISCUSSIONS, 2015, 183 :161-176
[9]   Electronic structure of CO - An exercise in modern chemical bonding theory [J].
Frenking, Gernot ;
Loschen, Christoph ;
Krapp, Andreas ;
Fau, Stefan ;
Strauss, Steven H. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2007, 28 (01) :117-126
[10]   The effects of bimetallic interactions for CO2-assisted oxidative dehydrogenation and dry reforming of propane [J].
Gomez, Elaine ;
Xie, Zhenhua ;
Chen, Jingguang G. .
AICHE JOURNAL, 2019, 65 (08)