Minimum Perimeter-Sum Partitions in the Plane

被引:0
|
作者
Abrahamsen, Mikkel [1 ]
de Berg, Mark [2 ]
Buchin, Kevin [2 ]
Mehr, Mehran [2 ]
Mehrabi, Ali D. [2 ]
机构
[1] Univ Copenhagen, Dept Comp Sci, DK-2100 Copenhagen, Denmark
[2] TU Eindhoven, Dept Comp Sci, NL-5600 MB Eindhoven, Netherlands
关键词
Computational geometry; Clustering; Minimum-perimeter partition; Convex hull; 2-CENTER; BIPARTITIONS; POINTS;
D O I
10.1007/s00454-019-00059-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let P be a set of n points in the plane. We consider the problem of partitioning P into two subsets P-1 and P-2 such that the sum of the perimeters of ch(P-1) and CH(P-2) is minimized, where CH(P-i) denotes the convex hull of P-i. The problem was first studied by Mitchell and Wynters in 1991 who gave an O(n(2)) time algorithm. Despite considerable progress on related problems, no subquadratic time algorithm for this problem was found so far. We present an exact algorithm solving the problem in O(n log(2) n) time and a (1 + epsilon)-approximation algorithm running in O(n + 1/epsilon(2) . log(2)(1/epsilon)) time.
引用
收藏
页码:483 / 505
页数:23
相关论文
共 50 条
  • [21] Inequalities for Plane Partitions
    Heim, Bernhard
    Neuhauser, Markus
    Troger, Robert
    ANNALS OF COMBINATORICS, 2023, 27 (01) : 87 - 108
  • [22] Inequalities for Plane Partitions
    Bernhard Heim
    Markus Neuhauser
    Robert Tröger
    Annals of Combinatorics, 2023, 27 : 87 - 108
  • [23] BKP plane partitions
    Foda, Omar
    Wheeler, Michael
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (01):
  • [24] Plane Partitions and Divisors
    Ballantine, Cristina
    Merca, Mircea
    SYMMETRY-BASEL, 2024, 16 (01):
  • [25] A NOTE ON NON LOWER SEMICONTINUOUS PERIMETER FUNCTIONALS ON PARTITIONS
    Magni, Annibale
    Novaga, Matteo
    NETWORKS AND HETEROGENEOUS MEDIA, 2016, 11 (03) : 501 - 508
  • [26] On the perimeter of a triangle in a Minkowski plane
    Maehara, H
    Zamfireseu, T
    AMERICAN MATHEMATICAL MONTHLY, 2005, 112 (06): : 521 - 522
  • [27] MINIMUM SUM
    Armantrout, Rae
    CHICAGO REVIEW, 2009, 54 (03) : 74 - 75
  • [28] The 2-adic valuation of plane partitions and totally symmetric plane partitions
    Keith, William J.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (01):
  • [29] MINIMUM COST PARTITIONS OF A RECTANGLE
    WACHS, ML
    DISCRETE MATHEMATICS, 1981, 36 (03) : 305 - 324
  • [30] Minimum partitions into specified parts
    Gupta, H
    AMERICAN JOURNAL OF MATHEMATICS, 1936, 58 : 573 - 576