Fanconi Anemia Gene Editing by the CRISPR/Cas9 System

被引:86
|
作者
Osborn, Mark J. [1 ,2 ,3 ]
Gabriel, Richard [5 ,6 ]
Webber, Beau R. [1 ]
DeFeo, Anthony P. [1 ]
McElroy, Amber N. [1 ]
Jarjour, Jordan [7 ]
Starker, Colby G. [2 ,3 ]
Wagner, John E. [1 ,3 ]
Joung, J. Keith [8 ,9 ,10 ]
Voytas, Daniel F. [2 ,4 ]
von Kalle, Christof [5 ,6 ]
Schmidt, Manfred [5 ,6 ]
Blazar, Bruce R. [1 ,3 ]
Tolar, Jakub [1 ,3 ]
机构
[1] Univ Minnesota, Dept Pediat, Div Blood & Marrow Transplantat, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Ctr Genome Engn, Minneapolis, MN 55455 USA
[3] Univ Minnesota, Stem Cell Inst, Minneapolis, MN 55455 USA
[4] Univ Minnesota, Dept Genet Cell Biol & Dev, Minneapolis, MN 55455 USA
[5] Natl Ctr Tumor Dis, Dept Translat Oncol, D-69120 Heidelberg, Germany
[6] German Canc Res Ctr, D-69120 Heidelberg, Germany
[7] Pregenen Inc, Seattle, WA 98103 USA
[8] Massachusetts Gen Hosp, Ctr Computat & Integrat Biol, Mol Pathol Unit, Boston, MA 02114 USA
[9] Massachusetts Gen Hosp, Ctr Canc Res, Boston, MA 02114 USA
[10] Harvard Univ, Sch Med, Program Biol & Biomed Sci, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
ZINC-FINGER NUCLEASES; HOMOLOGY-DIRECTED REPAIR; HEMATOPOIETIC STEM-CELLS; DOUBLE-STRAND BREAKS; DONOR BONE-MARROW; VECTOR INTEGRATION; HUMAN GENOME; DNA-REPAIR; CORD BLOOD; IN-VIVO;
D O I
10.1089/hum.2014.111
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Genome engineering with designer nucleases is a rapidly progressing field, and the ability to correct human gene mutations in situ is highly desirable. We employed fibroblasts derived from a patient with Fanconi anemia as a model to test the ability of the clustered regularly interspaced short palindromic repeats/Cas9 nuclease system to mediate gene correction. We show that the Cas9 nuclease and nickase each resulted in gene correction, but the nickase, because of its ability to preferentially mediate homology-directed repair, resulted in a higher frequency of corrected clonal isolates. To assess the off-target effects, we used both a predictive software platform to identify intragenic sequences of homology as well as a genome-wide screen utilizing linear amplification-mediated PCR. We observed no off-target activity and show RNA-guided endonuclease candidate sites that do not possess low sequence complexity function in a highly specific manner. Collectively, we provide proof of principle for precision genome editing in Fanconi anemia, a DNA repair-deficient human disorder.
引用
收藏
页码:114 / 126
页数:13
相关论文
共 50 条
  • [1] CRISPR/Cas9 Targeted Gene Editing and Cellular Engineering in Fanconi Anemia
    Osborn, Mark J.
    Lonetree, Cara-Lin
    Webber, Beau R.
    Patel, Dharmeshkumar
    Dunmire, Samantha
    DeFeo, Anthony P.
    McElroy, Amber N.
    MacMillan, Margaret L.
    Wagner, John E.
    Blazar, Bruce R.
    Tolar, Jakub
    STEM CELLS AND DEVELOPMENT, 2016, 25 (20) : 1591 - 1603
  • [2] CRISPR/CAS9 GENE EDITING
    不详
    CHEMICAL & ENGINEERING NEWS, 2015, : 26 - 27
  • [3] Correction of Fanconi Anemia Mutation Using the Crispr/Cas9 System
    Kawashima, Nozomu
    Okuno, Yusuke
    Sekiya, Yuko
    Wang, Xinan
    Narita, Atsushi
    Doisaki, Sayoko
    Kamei, Michi
    Nishio, Nobuhiro
    Muramatsu, Hideki
    Hama, Asahito
    Takahashi, Yoshiyuki
    Kojima, Seiji
    BLOOD, 2015, 126 (23)
  • [4] CRISPR–Cas9 genome editing in human cells occurs via the Fanconi anemia pathway
    Chris D. Richardson
    Katelynn R. Kazane
    Sharon J. Feng
    Elena Zelin
    Nicholas L. Bray
    Axel J. Schäfer
    Stephen N. Floor
    Jacob E. Corn
    Nature Genetics, 2018, 50 : 1132 - 1139
  • [5] A CRISPR/Cas9 system adapted for gene editing in marine algae
    Nymark, Marianne
    Sharma, Amit Kumar
    Sparstad, Torfinn
    Bones, Atle M.
    Winge, Per
    SCIENTIFIC REPORTS, 2016, 6
  • [6] A CRISPR/Cas9 system adapted for gene editing in marine algae
    Marianne Nymark
    Amit Kumar Sharma
    Torfinn Sparstad
    Atle M. Bones
    Per Winge
    Scientific Reports, 6
  • [7] Efficient BoPDS Gene Editing in Cabbage by the CRISPR/Cas9 System
    Ma, Cunfa
    Liu, Mengci
    Li, Qinfei
    Si, Jun
    Ren, Xuesong
    Song, Hongyuan
    HORTICULTURAL PLANT JOURNAL, 2019, 5 (04) : 164 - 169
  • [8] USH2A gene editing by CRISPR/Cas9 system
    Fuster-Garcia, C.
    Gonzalez-Romero, E.
    Garcia-Garcia, G.
    Jaijo, T.
    Vazquez-Manrique, R. P.
    Millan, J. M.
    Aller, E.
    HUMAN GENE THERAPY, 2016, 27 (11) : A142 - A143
  • [9] Gene editing in mouse zygotes using the CRISPR/Cas9 system
    Wefers, Benedikt
    Bashir, Sanum
    Rossius, Jana
    Wurst, Wolfgang
    Kuehn, Ralf
    METHODS, 2017, 121 : 55 - 67
  • [10] Application of CRISPR/Cas9 System for Efficient Gene Editing in Peanut
    Neelakandan, Anjanasree K.
    Wright, David A.
    Traore, Sy M.
    Ma, Xingli
    Subedi, Binita
    Veeramasu, Suman
    Spalding, Martin H.
    He, Guohao
    PLANTS-BASEL, 2022, 11 (10):