GEOMETRIC FORMALITY OF HOMOGENEOUS SPACES AND OF BIQUOTIENTS

被引:12
作者
Kotschick, D. [1 ]
Terzic, S. [2 ]
机构
[1] LMU Munchen, Math Inst, D-80333 Munich, Germany
[2] Univ Montenegro, Fac Sci, Podgorica 81000, Montenegro
关键词
formality; harmonic forms; homogeneous space; Stiefel manifold; biquotient; GENERALIZED SYMMETRIC-SPACES; HOMOTOPY-GROUPS; STIEFEL MANIFOLDS;
D O I
10.2140/pjm.2011.249.157
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide examples of homogeneous spaces that are neither symmetric spaces nor real cohomology spheres, yet have the property that every invariant metric is geometrically formal. We also extend the known obstructions to geometric formality to some new classes of homogeneous spaces and of biquotients, and to certain sphere bundles.
引用
收藏
页码:157 / 176
页数:20
相关论文
共 36 条
[1]   ON THE NON-EXISTENCE OF ELEMENTS OF HOPF INVARIANT ONE [J].
ADAMS, JF .
ANNALS OF MATHEMATICS, 1960, 72 (01) :20-109
[2]   INFINITE FAMILY OF DISTINCT 7-MANIFOLDS ADMITTING POSITIVELY CURVED RIEMANNIAN STRUCTURES [J].
ALOFF, S ;
WALLACH, NR .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 81 (01) :93-97
[3]  
[Anonymous], 1975, Graduate Texts in Mathematics
[4]  
Besse A. L., 1987, ERGEBNISSE MATH IHRE, DOI [10.1007/978-3-540-74311-8, DOI 10.1007/978-3-540-74311-8]
[5]   CHARACTERISTIC CLASSES AND HOMOGENEOUS SPACES .1. [J].
BOREL, A ;
HIRZEBRUCH, F .
AMERICAN JOURNAL OF MATHEMATICS, 1958, 80 (02) :458-538
[6]   LES BOUTS DES ESPACES HOMOGENES DE GROUPES DE LIE [J].
BOREL, A .
ANNALS OF MATHEMATICS, 1953, 58 (03) :443-457
[7]   *GROUPES DE LIE ET PUISSANCES REDUITES DE STEENROD [J].
BOREL, A ;
SERRE, JP .
AMERICAN JOURNAL OF MATHEMATICS, 1953, 75 (03) :409-448
[8]  
Borel A., 1953, COMMENT MATH HELV, V27, P165
[9]  
Bott R, 1969, LECT K X
[10]   REAL HOMOTOPY THEORY OF KAHLER MANIFOLDS [J].
DELIGNE, P ;
GRIFFITHS, P ;
MORGAN, J ;
SULLIVAN, D .
INVENTIONES MATHEMATICAE, 1975, 29 (03) :245-274