The classical Taub-Nut system: factorization, spectrum generating algebra and solution to the equations of motion

被引:10
作者
Latini, Danilo [1 ]
Ragnisco, Orlando
机构
[1] Univ Rome Tre, Dept Math & Phys, I-00146 Rome, Italy
关键词
Kepler-Coulomb potential; superintegrability; spectrum generating algebras; deformation; SUSYQM; MONOPOLES; SCATTERING; SPACETIME;
D O I
10.1088/1751-8113/48/17/175201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The formalism of SUperSYmmetric quantum mechanics (SUSYQM) is properly modified in such a way to be suitable for the description and the solution of a classical maximally superintegrable Hamiltonian system, the so-called Taub-Nut system, associated with the Hamiltonian: H-eta (q, p) = tau(eta) (q, p) + upsilon(eta) (q) = \q\ p(2)/2m(eta + \q\) - k/eta + \q\ (k > 0, eta > 0) In full agreement with the results recently derived by Ballesteros et al for the quantum case, we show that the classical Taub-Nut system shares a number of essential features with the Kepler system, that is just its Euclidean version arising in the limit eta --> 0, and for which a 'SUSYQM' approach has been recently introduced by Kuru and Negro. In particular, for positive eta and negative energy the motion is always periodic; it turns out that the period depends upon eta and goes to the Euclidean value as eta --> 0. Moreover, the maximal superintegrability is preserved by the eta-deformation, due to the existence of a larger symmetry group related to an eta-deformed Runge-Lenz vector, which ensures that in R-3 closed orbits are again ellipses. In this context, a deformed version of the third Kepler's law is also recovered. The closing section is devoted to a discussion of the eta < 0 case, where new and partly unexpected features arise.
引用
收藏
页数:13
相关论文
共 22 条
  • [1] LOW-ENERGY SCATTERING OF NON-ABELIAN MONOPOLES
    ATIYAH, MF
    HITCHIN, NJ
    [J]. PHYSICS LETTERS A, 1985, 107 (01) : 21 - 25
  • [2] A maximally superintegrable system on an n-dimensional space of nonconstant curvature
    Ballesteros, A.
    Enciso, A.
    Herranz, F. J.
    Ragnisco, O.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (04) : 505 - 509
  • [3] A maximally superintegrable deformation of the N-dimensional quantum Kepler-Coulomb system
    Ballesteros, A.
    Enciso, A.
    Herranz, F. J.
    Ragnisco, O.
    Riglioni, D.
    [J]. XXIST INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS21), 2013, 474
  • [4] An exactly solvable deformation of the Coulomb problem associated with the Taub-NUT metric
    Ballesteros, Angel
    Enciso, Alberto
    Herranz, Francisco J.
    Ragnisco, Orlando
    Riglioni, Danilo
    [J]. ANNALS OF PHYSICS, 2014, 351 : 540 - 557
  • [5] On Two Superintegrable Nonlinear Oscillators in N Dimensions
    Ballesteros, Angel
    Enciso, Alberto
    Herranz, Francisco J.
    Ragnisco, Orlando
    Riglioni, Danilo
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (07) : 2268 - 2277
  • [6] Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stackel Transform
    Ballesteros, Angel
    Enciso, Alberto
    Herranz, Francisco J.
    Ragnisco, Orlando
    Riglioni, Danilo
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2011, 7
  • [7] Hamiltonian Systems Admitting a Runge-Lenz Vector and an Optimal Extension of Bertrand's Theorem to Curved Manifolds
    Ballesteros, Angel
    Enciso, Alberto
    Herranz, Francisco J.
    Ragnisco, Orlando
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 290 (03) : 1033 - 1049
  • [8] Superintegrability on N-dimensional curved spaces: Central potentials, centrifugal terms and monopoles
    Ballesteros, Angel
    Enciso, Alberto
    Herranz, Francisco J.
    Ragnisco, Orlando
    [J]. ANNALS OF PHYSICS, 2009, 324 (06) : 1219 - 1233
  • [9] Bertrand J., 1873, CR HEBD ACAD SCI, V77, P849
  • [10] Gravitomagnetism in the Kerr-Newman-Taub-NUT spacetime
    Bini, D
    Cherubini, C
    Jantzen, RT
    Mashhoon, B
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (03) : 457 - 468