Gate-controlled electron transport in coronenes as a bottom-up approach towards graphene transistors

被引:102
作者
Diez-Perez, Ismael [2 ]
Li, Zhihai [2 ]
Hihath, Joshua [2 ]
Li, Jinghong [3 ]
Zhang, Chengyi [1 ]
Yang, Xiaomei [1 ]
Zang, Ling [1 ]
Dai, Yijun [4 ]
Feng, Xinliang [4 ]
Muellen, Klaus [4 ]
Tao, Nongjian [2 ]
机构
[1] Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84108 USA
[2] Arizona State Univ, Ctr Bioelect & Biosensors, Biodesign Inst, Tempe, AZ 85287 USA
[3] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China
[4] Max Planck Inst Polymer Res, D-55021 Mainz, Germany
来源
NATURE COMMUNICATIONS | 2010年 / 1卷
基金
美国国家科学基金会;
关键词
SUSPENDED GRAPHENE; CONDUCTANCE; JUNCTIONS;
D O I
10.1038/ncomms1029
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Graphene is considered to be a large aromatic molecule, the limiting case of the family of polycyclic aromatic hydrocarbons. This fascinating two-dimensional material has many potential applications, including field effect transistors (FETs). However, the graphene sheets in these devices have irregular shapes and variable sizes, and contain various impurities and defects, which are undesirable for applications. Moreover, the bandgap of graphene is zero and, consequently, the on/off ratios of graphene FETs are small, making it difficult to build logic circuits. To overcome these difficulties, we report here a bottom-up attempt to fabricate nanoscale graphene FETs. We synthesize structurally well-defined coronene molecules (consisting of 13 benzene rings) terminated with linker groups, bridge each molecule to source and drain electrodes through the linkers, measure conductance and demonstrate the FET behaviour of the molecule.
引用
收藏
页数:5
相关论文
共 17 条
[1]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[2]   Electron Transport in Single Molecules: From Benzene to Graphene [J].
Chen, F. ;
Tao, N. J. .
ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (03) :429-438
[3]   Effect of anchoring groups on single-molecule conductance: Comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules [J].
Chen, Fang ;
Li, Xiulan ;
Hihath, Joshua ;
Huang, Zhifeng ;
Tao, Nongjian .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (49) :15874-15881
[4]   Electrochemical Gate-Controlled Charge Transport in Graphene in Ionic Liquid and Aqueous Solution [J].
Chen, Fang ;
Qing, Quan ;
Xia, Jilin ;
Li, Jinghong ;
Tao, Nongjian .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (29) :9908-+
[5]  
Díez-Pérez I, 2009, NAT CHEM, V1, P635, DOI [10.1038/nchem.392, 10.1038/NCHEM.392]
[6]   Approaching ballistic transport in suspended graphene [J].
Du, Xu ;
Skachko, Ivan ;
Barker, Anthony ;
Andrei, Eva Y. .
NATURE NANOTECHNOLOGY, 2008, 3 (08) :491-495
[7]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[8]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[9]   Measurement of single molecule conductivity using the spontaneous formation of molecular wires [J].
Haiss, W ;
Nichols, RJ ;
van Zalinge, H ;
Higgins, SJ ;
Bethell, D ;
Schiffrin, DJ .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2004, 6 (17) :4330-4337
[10]   Chemically derived, ultrasmooth graphene nanoribbon semiconductors [J].
Li, Xiaolin ;
Wang, Xinran ;
Zhang, Li ;
Lee, Sangwon ;
Dai, Hongjie .
SCIENCE, 2008, 319 (5867) :1229-1232