Diffusion-weighted and diffusion tensor magnetic resonance brain imaging: Principles and applications

被引:4
作者
Pizzini, F [1 ]
Beltramello, A [1 ]
Piovan, E [1 ]
Alessandrini, F [1 ]
机构
[1] Verona Univ Hosp, Serv Neuroradiol, Verona, Italy
来源
RIVISTA DI NEURORADIOLOGIA | 2003年 / 16卷 / 02期
关键词
brain; diffusion; diffusion weighted imaging; diffusion tensor imaging; magnetic resonance;
D O I
10.1177/197140090301600202
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Diffusion Weighted Imaging (DWI) is one of the most recent products of Magnetic Resonance (MR) technology evolution. DWI has been proposed as a noninvasive tool for evaluating structural and physiologic states in biologic tissues as hyperacute ischemic changes within brain tissue. Recently, its more complex and detailed evolution, Diffusion Tensor Imaging (DTI), has been introduced and its clinical applications are the evaluation of anatomical structures and pathologic processes in white matter. White matter quantitative maps that indicate the integrity of brain tissue, color map, and tractography that identifies macroscopic three-dimensional architecture of fiber tracts (e.g., projections and association pathways) can be obtained with DTI. Diffusion weighted imaging visualization techniques (ADC and Trace) are applied for the study of stroke, in the differential diagnosis of expansive lesions (e.g. epidermoid vs. arachnoid cyst) and in detecting traumatic and other lesions associated with restricted diffusion (e.g. MS plaques). On the other hand, DTI provides the identification of abnormalities in the otherwise normal appearing white matter with the understanding of the organization of the fibers, both in tumors and in other cortical or white matter diseases (including stroke, dementias, demyelinating-dismyelinating diseases, epilepsy, schizophrenia). Furthermore, in combination with functional MR, DTI might contribute to the comprehension of brain development, aging and connectivity, thus having a significant impact on brain functional studies.
引用
收藏
页码:207 / 220
页数:14
相关论文
共 77 条
[1]   Normal aging in the central nervous system: quantitative MR diffusion-tensor analysis [J].
Abe, O ;
Aoki, S ;
Hayashi, N ;
Yamada, H ;
Kunimatsu, A ;
Mori, H ;
Yoshikawa, T ;
Okubo, T ;
Ohtomo, K .
NEUROBIOLOGY OF AGING, 2002, 23 (03) :433-441
[2]  
Basser PJ, 2000, MAGNET RESON MED, V44, P625, DOI 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO
[3]  
2-O
[4]   A simplified method to measure the diffusion tensor from seven MR images [J].
Basser, PJ ;
Pierpaoli, C .
MAGNETIC RESONANCE IN MEDICINE, 1998, 39 (06) :928-934
[5]   MR DIFFUSION TENSOR SPECTROSCOPY AND IMAGING [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
BIOPHYSICAL JOURNAL, 1994, 66 (01) :259-267
[6]  
Basser PJ, 1996, J MAGN RESON SER B, V111, P209, DOI [10.1006/jmrb.1996.0086, 10.1016/j.jmr.2011.09.022]
[7]   ESTIMATION OF THE EFFECTIVE SELF-DIFFUSION TENSOR FROM THE NMR SPIN-ECHO [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
JOURNAL OF MAGNETIC RESONANCE SERIES B, 1994, 103 (03) :247-254
[8]   DETERMINANTS OF ANISOTROPIC WATER DIFFUSION IN NERVES [J].
BEAULIEU, C ;
ALLEN, PS .
MAGNETIC RESONANCE IN MEDICINE, 1994, 31 (04) :394-400
[9]   Study of pediatric brain development using magnetic resonance imaging of anisotropic diffusion [J].
Boujraf, S ;
Luypaert, R ;
Shabana, W ;
De Meirleir, L ;
Sourbron, S ;
Osteaux, M .
MAGNETIC RESONANCE IMAGING, 2002, 20 (04) :327-336
[10]   White matter damage in Alzheimer's disease assessed in vivo using diffusion tensor magnetic resonance imaging [J].
Bozzali, M ;
Falini, A ;
Franceschi, M ;
Cercignani, M ;
Zuffi, M ;
Scotti, G ;
Comi, G ;
Filippi, M .
JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2002, 72 (06) :742-746