Inverse Open-Loop Noncooperative Differential Games and Inverse Optimal Control

被引:37
作者
Molloy, Timothy L. [1 ]
Inga, Jairo [2 ]
Flad, Michael [2 ]
Ford, Jason J. [1 ]
Perez, Tristan [1 ,3 ]
Hohmann, Soeren [2 ]
机构
[1] Queensland Univ Technol, Sch Elect Engn & Comp Sci, Brisbane, Qld 4000, Australia
[2] Karlsruhe Inst Technol, Inst Control Syst, D-76131 Karlsruhe, Germany
[3] Boeing Res & Technol Australia, St Lucia, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
Games; Optimal control; Trajectory; Nash equilibrium; Australia; Differential equations; Optimization; Game theory; inverse differential games; inverse optimal control; optimal control; DYNAMIC-MODELS; TIME;
D O I
10.1109/TAC.2019.2921835
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of computing parameters of player cost functionals such that given state and control trajectories constitute an open-loop Nash equilibrium for a noncooperative differential game. We propose two methods for solving this inverse differential game problem and novel conditions under which our methods compute unique cost-functional parameters. Our conditions are analogous to persistence of excitation conditions in adaptive control and parameter estimation. The efficacy of our methods is illustrated in simulations.
引用
收藏
页码:897 / 904
页数:8
相关论文
共 50 条
[41]   Control Law Learning Based on LQR Reconstruction With Inverse Optimal Control [J].
Qu, Chendi ;
He, Jianping ;
Duan, Xiaoming .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2025, 70 (02) :1350-1357
[42]   Online Learning Human Behavior for a Class of Human-in-the-Loop Systems via Adaptive Inverse Optimal Control [J].
Wu, Huai-Ning .
IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2022, 52 (05) :1004-1014
[43]   Optimal boundary control of a tracking problem for a parabolic distributed system with open-loop control using evolutionary algorithms [J].
Stonier, RJ ;
Drumm, MJ .
6TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL XII, PROCEEDINGS: INDUSTRIAL SYSTEMS AND ENGINEERING II, 2002, :175-180
[44]   Optimal Speed Tracking Control of PMSM via Inverse Optimal Composite Controller [J].
Fan, Zhong-Xin ;
Li, Shihua ;
Liu, Rongjie .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (08) :3880-3884
[45]   Constrained Inverse Optimal Control With Application to a Human Manipulation Task [J].
Menner, Marcel ;
Worsnop, Peter ;
Zeilinger, Melanie N. .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2021, 29 (02) :826-834
[46]   Adaptive Fuzzy Inverse Optimal Control of Nonlinear Switched Systems [J].
Zeng, Danping ;
Liu, Zhi ;
Wang, Yaonan ;
Chen, C. L. Philip ;
Zhang, Yun ;
Wu, Zongze .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2023, 31 (09) :3093-3107
[47]   An Optimal Control Method for Nonlinear Inverse Diffusion Coefficient Problem [J].
Deng, Zui-Cha ;
Hon, Y. -C. ;
Yang, Liu .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 160 (03) :890-910
[48]   Distributed inverse optimal control [J].
Jin, Wanxin ;
Mou, Shaoshuai .
AUTOMATICA, 2021, 129
[49]   Continuous-time inverse quadratic optimal control problem [J].
Li, Yibei ;
Yao, Yu ;
Hu, Xiaoming .
AUTOMATICA, 2020, 117
[50]   On the Reliability of Inverse Optimal Control [J].
Colombel, Jessica ;
Daney, David ;
Charpillet, Franc Comma Ois .
2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, :8504-8510