Inverse Open-Loop Noncooperative Differential Games and Inverse Optimal Control

被引:37
作者
Molloy, Timothy L. [1 ]
Inga, Jairo [2 ]
Flad, Michael [2 ]
Ford, Jason J. [1 ]
Perez, Tristan [1 ,3 ]
Hohmann, Soeren [2 ]
机构
[1] Queensland Univ Technol, Sch Elect Engn & Comp Sci, Brisbane, Qld 4000, Australia
[2] Karlsruhe Inst Technol, Inst Control Syst, D-76131 Karlsruhe, Germany
[3] Boeing Res & Technol Australia, St Lucia, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
Games; Optimal control; Trajectory; Nash equilibrium; Australia; Differential equations; Optimization; Game theory; inverse differential games; inverse optimal control; optimal control; DYNAMIC-MODELS; TIME;
D O I
10.1109/TAC.2019.2921835
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of computing parameters of player cost functionals such that given state and control trajectories constitute an open-loop Nash equilibrium for a noncooperative differential game. We propose two methods for solving this inverse differential game problem and novel conditions under which our methods compute unique cost-functional parameters. Our conditions are analogous to persistence of excitation conditions in adaptive control and parameter estimation. The efficacy of our methods is illustrated in simulations.
引用
收藏
页码:897 / 904
页数:8
相关论文
共 50 条
[31]   Constraint handling optimal PI control of open-loop unstable process: Analytical approach [J].
Rodrigue Tchamna ;
Moonyong Lee .
Korean Journal of Chemical Engineering, 2017, 34 :3067-3076
[32]   Distributed Inverse Optimal Control for Discrete-Time Nonlinear Multi-Agent Systems [J].
Belfo, Joao P. ;
Aguiar, A. Pedro ;
Lemos, Joao M. .
IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (06) :2096-2101
[33]   Inverse reinforcement learning for discrete-time linear systems based on inverse optimal control [J].
Huang, Jiashun ;
Xu, Dengguo ;
Li, Yahui ;
Zhang, Xiang ;
Zhao, Jingling .
ISA TRANSACTIONS, 2025, 163 :108-119
[34]   From inverse optimal control to inverse reinforcement learning: A historical review [J].
Ab Azar, Nematollah ;
Shahmansoorian, Aref ;
Davoudi, Mohsen .
ANNUAL REVIEWS IN CONTROL, 2020, 50 :119-138
[35]   Energy-Based Continuous Inverse Optimal Control [J].
Xu, Yifei ;
Xie, Jianwen ;
Zhao, Tianyang ;
Baker, Chris ;
Zhao, Yibiao ;
Wu, Ying Nian .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (12) :10563-10577
[36]   A Robustness Analysis of Inverse Optimal Control of Bipedal Walking [J].
Rebula, John R. ;
Schaal, Stefan ;
Finley, James ;
Righetti, Ludovic .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (04) :4531-4538
[37]   Optimal Open-Loop MIMO Precoder Design [J].
Li, Gen ;
Mishra, Deepak ;
Hao, Li ;
Ma, Zheng ;
Larsson, Erik G. .
IEEE COMMUNICATIONS LETTERS, 2020, 24 (09) :2075-2079
[38]   Asymptotically optimal open-loop load balancing [J].
Anselmi, Jonatha .
QUEUEING SYSTEMS, 2017, 87 (3-4) :245-267
[39]   The Inverse Optimal Control Problem for a Three-Loop Missile Autopilot [J].
Donghyeok Hwang ;
Min-Jea Tahk .
International Journal of Aeronautical and Space Sciences, 2018, 19 :411-422
[40]   The Inverse Optimal Control Problem for a Three-Loop Missile Autopilot [J].
Hwang, Donghyeok ;
Tahk, Min-Jea .
INTERNATIONAL JOURNAL OF AERONAUTICAL AND SPACE SCIENCES, 2018, 19 (02) :411-422