Inverse Open-Loop Noncooperative Differential Games and Inverse Optimal Control

被引:37
作者
Molloy, Timothy L. [1 ]
Inga, Jairo [2 ]
Flad, Michael [2 ]
Ford, Jason J. [1 ]
Perez, Tristan [1 ,3 ]
Hohmann, Soeren [2 ]
机构
[1] Queensland Univ Technol, Sch Elect Engn & Comp Sci, Brisbane, Qld 4000, Australia
[2] Karlsruhe Inst Technol, Inst Control Syst, D-76131 Karlsruhe, Germany
[3] Boeing Res & Technol Australia, St Lucia, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
Games; Optimal control; Trajectory; Nash equilibrium; Australia; Differential equations; Optimization; Game theory; inverse differential games; inverse optimal control; optimal control; DYNAMIC-MODELS; TIME;
D O I
10.1109/TAC.2019.2921835
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of computing parameters of player cost functionals such that given state and control trajectories constitute an open-loop Nash equilibrium for a noncooperative differential game. We propose two methods for solving this inverse differential game problem and novel conditions under which our methods compute unique cost-functional parameters. Our conditions are analogous to persistence of excitation conditions in adaptive control and parameter estimation. The efficacy of our methods is illustrated in simulations.
引用
收藏
页码:897 / 904
页数:8
相关论文
共 50 条
[21]   Data-Driven Inverse Reinforcement Learning Control for Linear Multiplayer Games [J].
Lian, Bosen ;
Donge, Vrushabh S. ;
Lewis, Frank L. ;
Chai, Tianyou ;
Davoudi, Ali .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (02) :2028-2041
[22]   Optimal open-loop strategies in a debt management problem [J].
Bressan, Alberto ;
Jiang, Yilun .
ANALYSIS AND APPLICATIONS, 2018, 16 (01) :133-157
[23]   Optimal open-loop desynchronization of neural oscillator populations [J].
Dan Wilson .
Journal of Mathematical Biology, 2020, 81 :25-64
[24]   Optimal open-loop desynchronization of neural oscillator populations [J].
Wilson, Dan .
JOURNAL OF MATHEMATICAL BIOLOGY, 2020, 81 (01) :25-64
[25]   Methods for solution of large optimal control problems that bypass open-loop model reduction [J].
Bewley, Thomas ;
Luchini, Paolo ;
Pralits, Jan .
MECCANICA, 2016, 51 (12) :2997-3014
[26]   Open-loop optimal control of a flapping wing using an adjoint Lattice Boltzmann method [J].
Rutkowski, Mariusz ;
Gryglas, Wojciech ;
Szumbarski, Jacek ;
Leonardi, Christopher ;
Laniewski-Wollk, Lukasz .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (12) :3547-3569
[27]   An Efficient Optimal Control Method for Open-Loop Transient Stability Emergency Control [J].
Li, Zhihao ;
Yao, Guoqiang ;
Geng, Guangchao ;
Jiang, Quanyuan .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (04) :2704-2713
[28]   Methods for solution of large optimal control problems that bypass open-loop model reduction [J].
Thomas Bewley ;
Paolo Luchini ;
Jan Pralits .
Meccanica, 2016, 51 :2997-3014
[29]   Trajectory Optimization of Flexible Mobile Manipulators Using Open-Loop Optimal Control Method [J].
Korayem, M. H. ;
Nohooji, H. Rahimi .
INTELLIGENT ROBOTICS AND APPLICATIONS, PT I, PROCEEDINGS, 2008, 5314 :54-63
[30]   Open-loop optimal control of batch chromatographic separation processes using direct collocation [J].
Holmqvist, A. ;
Magnusson, F. .
JOURNAL OF PROCESS CONTROL, 2016, 46 :55-74