Localization microscopy at doubled precision with patterned illumination

被引:135
作者
Cnossen, Jelmer [1 ,2 ]
Hinsdale, Taylor [1 ]
Thorsen, Rasmus O. [1 ]
Siemons, Marijn [3 ]
Schueder, Florian [4 ,5 ,6 ]
Jungmann, Ralf [4 ,5 ,6 ]
Smith, Carlas S. [1 ,2 ,7 ]
Rieger, Bernd [1 ]
Stallinga, Sjoerd [1 ]
机构
[1] Delft Univ Technol, Dept Imaging Phys, Delft, Netherlands
[2] Delft Univ Technol, Delft Ctr Syst & Control, Delft, Netherlands
[3] Univ Utrecht, Dept Biol, Utrecht, Netherlands
[4] Ludwig Maximilians Univ Munchen, Dept Phys, Munich, Germany
[5] Ludwig Maximilians Univ Munchen, Ctr Nanosci, Munich, Germany
[6] Max Planck Inst Biochem, Martinsried, Germany
[7] Univ Oxford, Dept Engn Sci, Oxford, England
基金
美国国家卫生研究院;
关键词
SINGLE-MOLECULE LOCALIZATION; SUPERRESOLUTION MICROSCOPY; RESOLUTION; NANOSCOPY; TRACKING;
D O I
10.1038/s41592-019-0657-7
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
MINFLUX offers a breakthrough in single molecule localization precision, but is limited in field of view. Here we combine centroid estimation and illumination pattern induced photon count variations in a conventional widefield imaging setup to extract position information over a typical micrometer-sized field of view. We show a near two-fold improvement in precision over standard localization with the same photon count on DNA-origami nanostructures and tubulin in cells, using DNA-PAINT and STORM imaging. SIMFLUX combines elements of MINFLUX with structured illumination to double localization precision and improve resolution in localization microscopy. The approach was demonstrated on DNA origami and on cellular microtubules.
引用
收藏
页码:59 / +
页数:9
相关论文
共 30 条
  • [1] Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes
    Balzarotti, Francisco
    Eilers, Yvan
    Gwosch, Klaus C.
    Gynna, Arvid H.
    Westphal, Volker
    Stefani, Fernando D.
    Elf, Johan
    Hell, Stefan W.
    [J]. SCIENCE, 2017, 355 (6325) : 606 - 612
  • [2] Fast subnanometer particle localization by traveling-wave tracking
    Busoni, L
    Dornier, A
    Viovy, JL
    Prost, J
    Cappello, G
    [J]. JOURNAL OF APPLIED PHYSICS, 2005, 98 (06)
  • [3] Nanoscopy with more than 100,000 'doughnuts'
    Chmyrov, Andriy
    Keller, Jan
    Grotjohann, Tim
    Ratz, Michael
    d'Este, Elisa
    Jakobs, Stefan
    Eggeling, Christian
    Hell, Stefan W.
    [J]. NATURE METHODS, 2013, 10 (08) : 737 - +
  • [4] Grimm JB, 2015, NAT METHODS, V12, P244, DOI [10.1038/NMETH.3256, 10.1038/nmeth.3256]
  • [5] Molecular resolution imaging by repetitive optical selective exposure
    Gu, Lusheng
    Li, Yuanyuan
    Zhang, Shuwen
    Xue, Yanhong
    Li, Weixing
    Li, Dong
    Xu, Tao
    Ji, Wei
    [J]. NATURE METHODS, 2019, 16 (11) : 1114 - +
  • [6] Heintzmann R., 2019, PREPRINT
  • [7] Super-Resolution Structured Illumination Microscopy
    Heintzmann, Rainer
    Huser, Thomas
    [J]. CHEMICAL REVIEWS, 2017, 117 (23) : 13890 - 13908
  • [8] Hell SW, 2009, NAT METHODS, V6, P24, DOI [10.1038/NMETH.1291, 10.1038/nmeth.1291]
  • [9] Template-free 2D particle fusion in localization microscopy
    Heydarian, Hamidreza
    Schueder, Florian
    Strauss, Maximilian T.
    van Werkhoven, Ben
    Fazel, Mohamadreza
    Lidke, Keith A.
    Jungmann, Ralf
    Stallinga, Sjoerd
    Rieger, Bernd
    [J]. NATURE METHODS, 2018, 15 (10) : 781 - +
  • [10] Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells
    Huang, Bo
    Babcock, Hazen
    Zhuang, Xiaowei
    [J]. CELL, 2010, 143 (07) : 1047 - 1058