Volume effect of organic solvent on electrochemical Seebeck coefficient of [Fe(CN)6]4-/[Fe(CN)6]3- in water

被引:19
作者
Inoue, Dai [1 ]
Fukuzumi, Yuya [1 ]
Moritomo, Yutaka [1 ,2 ,3 ]
机构
[1] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tennodai 1-1-1, Tsukuba, Ibaraki 3057571, Japan
[2] Univ Tsukuba, Fac Pure & Appl Sci, Tennodai 1-1-1, Tsukuba, Ibaraki 3057571, Japan
[3] Univ Tsukuba, Tsukuba Res Ctr Energy Mat Sci TREMS, Tsukuba, Ibaraki 3058571, Japan
关键词
CARBON-NANOTUBE; THERMOELECTRIC-POWER; IONIC-CONDUCTIVITY; REDOX COUPLE; PERFORMANCE; CONVERSION; GENERATION; EFFICIENCY; CELLS; CYCLE;
D O I
10.35848/1347-4065/ab731d
中图分类号
O59 [应用物理学];
学科分类号
摘要
A thermocell with use of the electrochemical Seebeck coefficient (alpha dEdT;E and T are the redox potential and temperature, respectively). is a promising energy-harvesting device. alpha is the key parameter that governs the thermal efficiency (eta) of the thermocell. Here, we systematically investigated the variation (Delta alpha) in alpha of a redox couple of [Fe(CN)(6)](4-)/[Fe(CN)(6)](3-) in water, by adding 9% organic solvent in molar ratio. We found that Delta alpha for 11 organic solvents well scale to the molar volume (V). The empirical volume effect is understood in terms of the replacement of water molecules with organic molecules depending on V. (c) 2020 The Japan Society of Applied Physics
引用
收藏
页数:5
相关论文
共 38 条
[1]   High Seebeck coefficient redox ionic liquid electrolytes for thermal energy harvesting [J].
Abraham, Theodore J. ;
MacFarlane, Douglas R. ;
Pringle, Jennifer M. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (09) :2639-2645
[2]   Seebeck coefficients in ionic liquids -prospects for thermo-electrochemical cells [J].
Abraham, Theodore J. ;
MacFarlane, Douglas R. ;
Pringle, Jennifer M. .
CHEMICAL COMMUNICATIONS, 2011, 47 (22) :6260-6262
[3]   Huge Seebeck coefficients in nonaqueous electrolytes [J].
Bonetti, M. ;
Nakamae, S. ;
Roger, M. ;
Guenoun, P. .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (11)
[4]   Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest [J].
Duan, Jiangjiang ;
Feng, Guang ;
Yu, Boyang ;
Li, Jia ;
Chen, Ming ;
Yang, Peihua ;
Feng, Jiamao ;
Liu, Kang ;
Zhou, Jun .
NATURE COMMUNICATIONS, 2018, 9
[5]  
Goldsmid H.J., 2010, Introduction to Thermoelectricity', DOI DOI 10.1007/978-3-642-00716-3
[6]   The amplifying effect of natural convection on power generation of thermogalvanic cells [J].
Gunawan, Andrey ;
Li, Hechao ;
Lin, Chao-Han ;
Buttry, Daniel A. ;
Mujica, Vladimiro ;
Taylor, Robert A. ;
Prasher, Ravi S. ;
Phelan, Patrick E. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 78 :423-434
[7]   Liquid Thermoelectrics: Review of Recent And Limited New Data of Thermogalvanic Cell Experiments [J].
Gunawan, Andrey ;
Lin, Chao-Han ;
Buttry, Daniel A. ;
Mujica, Vladimiro ;
Taylor, Robert A. ;
Prasher, Ravi S. ;
Phelan, Patrick E. .
NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, 2013, 17 (04) :304-323
[8]   Heat-to-current conversion of low-grade heat from a thermocapacitive cycle by supercapacitors [J].
Haertel, Andreas ;
Janssen, Mathijs ;
Weingarth, Daniel ;
Presser, Volker ;
van Roij, Rene .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (08) :2396-2401
[9]   Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states [J].
Heremans, Joseph P. ;
Jovovic, Vladimir ;
Toberer, Eric S. ;
Saramat, Ali ;
Kurosaki, Ken ;
Charoenphakdee, Anek ;
Yamanaka, Shinsuke ;
Snyder, G. Jeffrey .
SCIENCE, 2008, 321 (5888) :554-557
[10]   Harvesting Waste Thermal Energy Using Carbon-Nanotube-Based Thermo-Electrochemical Cell [J].
Hu, Renchong ;
Cola, Baratunde A. ;
Haram, Nanda ;
Barisci, Joseph N. ;
Lee, Sergey ;
Stoughton, Stephanie ;
Wallace, Gordon ;
Too, Chee ;
Thomas, Michael ;
Gestos, Adrian ;
dela Cruz, Marilou E. ;
Ferraris, John P. ;
Zakhidov, Anvar A. ;
Baughman, Ray H. .
NANO LETTERS, 2010, 10 (03) :838-846